首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
2022中考数学 压轴题函数平行四边形问题精选解析(三)
2022中考数学 压轴题函数平行四边形问题精选解析(三)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022中考数学压轴题函数平行四边形问题精选解析(三)例5如图1,等边△ABC的边长为4,E是边BC上的动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含的代数式表示);(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.图1解析(1)BE、PE、BF三条线段中任选两条.(2)如图2,在Rt△CEH中,∠C=60°,EC=x,所以.因为PQ=FE=BE=4-x,所以.(3)因为,所以当x=2时,平行四边形EFPQ的面积最大.此时E、F、P分别为△ABC的三边BC、AB、AC的中点,且C、Q重合,四边形EFPQ是边长为2的菱形(如图3).图2图3过点E点作ED⊥FP于D,则ED=EH=.如图4,当⊙E与平行四边形EFPQ的四条边交点的总个数是2个时,0<r<;6\n如图5,当⊙E与平行四边形EFPQ的四条边交点的总个数是4个时,r=;如图6,当⊙E与平行四边形EFPQ的四条边交点的总个数是6个时,<r<2;如图7,当⊙E与平行四边形EFPQ的四条边交点的总个数是3个时,r=2时;如图8,当⊙E与平行四边形EFPQ的四条边交点的总个数是0个时,r>2时.图4图5图6图7图8考点伸展本题中E是边BC上的动点,设EC=x,如果没有限定0<x≤2,那么平行四边形EFPQ的面积是如何随x的变化而变化的?事实上,当x>2时,点P就不存在了,平行四边形EFPQ也就不存在了.因此平行四边形EFPQ的面积随x的增大而增大.例6如图1,抛物线与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF//DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系.6\n图1解析(1)A(-1,0),B(3,0),C(0,3).抛物线的对称轴是x=1.(2)①直线BC的解析式为y=-x+3.把x=1代入y=-x+3,得y=2.所以点E的坐标为(1,2).把x=1代入,得y=4.所以点D的坐标为(1,4).因此DE=2.因为PF//DE,点P的横坐标为m,设点P的坐标为,点F的坐标为,因此.当四边形PEDF是平行四边形时,DE=FP.于是得到.解得,(与点E重合,舍去).因此,当m=2时,四边形PEDF是平行四边形时.②设直线PF与x轴交于点M,那么OM+BM=OB=3.因此.m的变化范围是0≤m≤3.图2图36\n考点伸展在本题条件下,四边形PEDF可能是等腰梯形吗?如果可能,求m的值;如果不可能,请说明理由.如图4,如果四边形PEDF是等腰梯形,那么DG=EH,因此.于是.解得(与点CE重合,舍去),(与点E重合,舍去).因此四边形PEDF不可能成为等腰梯形.图4例7如图,在平面直角坐标系xOy中,直线与交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.(1)求点A、B、C的坐标.(2)当△CBD为等腰三角形时,求点的坐标.(3)在直线AB上是否存在点E,使得以点E、D、O、A为顶点的四边形是平行四边形?如果存在,直接写出的值;如果不存在,请说明理由.图1解析(1)在中,当时,,所以点的坐标为.在6\n中,当时,,所以点的坐标为(4,0).解方程组得,.所以点的坐标为.(2)因为点D在直线上,设点D的坐标为.当△CBD为等腰三角形时,有以下三种情况:①如图2,当DB=DC时,设底边BC上的高为DM.在Rt△CDM中,,所以.这时点D的坐标为.②如图3,当CD=CB=5时,点D恰好落在y轴上,此时点D的坐标为(0,3).根据对称性,点D关于点C对称的点D′的坐标为(8,-3).③如图4,当BC=BD时,设BC、DC边上的高分别为DM、BN.在Rt△BCN中,BC=5,所以CN=4,因此DC=8.在Rt△DCM中,DC=8,所以,.这时点D的坐标为.综上所述,当△CBD为等腰三角形时,点D的坐标为、(0,3)、(8,-3)或.图2图3图4(3)如图5,以点E、D、O、A为顶点的四边形是平行四边形有以下三种情形:①当四边形AEOD为平行四边形时,.②当四边形ADEO为平行四边形时,.6\n图5③当四边形AODE为平行四边形时,.考点伸展如图5,第(3)题这样解:在△ABC中,已知BC=5,BC边上的高为,解得AB=,AC=.由,得,所以.由,得,所以.结合图5,可以计算出,或.6
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022中考数学压轴题 函数面积问题精选解析(三)
2022中考数学压轴题 函数梯形问题精选解析(三)
2022中考数学压轴题 函数平行四边形问题精选解析(二)
2022中考数学压轴题 函数平行四边形问题精选解析(三)
2022中考数学压轴题 函数平行四边形问题精选解析(一)
2022中考数学压轴题 几何与函数问题精选解析(三)
2022中考数学 压轴题函数面积问题精选解析(三)
2022中考数学 压轴题函数梯形问题精选解析(二)
2022中考数学 压轴题函数平行四边形问题精选解析(二)
2022中考数学 压轴题函数平行四边形问题精选解析(一)
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 21:32:21
页数:6
价格:¥3
大小:189.21 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划