首页

2022年中考数学一轮复习第二十四讲圆的有关性质专题训练

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/12

2/12

剩余10页未读,查看更多内容需下载

第七单元圆第24讲 圆的有关性质纲要求命题趋势1.理解圆的有关概念和性质,了解圆心角、弧、弦之间的关系.2.了解圆心角与圆周角及其所对弧的关系,掌握垂径定理及推论.  中考主要考查圆的有关概念和性质,与垂径定理有关的计算,与圆有关的角的性质及其应用.题型以选择题、填空题为主.知识梳理一、圆的有关概念及其对称性1.圆的定义(1)圆是平面内到一定点的距离等于定长的所有点组成的图形.这个定点叫做________,定长叫做________;(2)平面内一个动点绕一个定点旋转一周所形成的图形叫做圆,定点叫做圆心,定点与动点的连线段叫做半径.2.圆的有关概念(1)连接圆上任意两点的________叫做弦;(2)圆上任意两点间的________叫做圆弧,简称弧.(3)________相等的两个圆是等圆.(4)在同圆或等圆中,能够互相________的弧叫做等弧.3.圆的对称性(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;(2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形;(3)圆是旋转对称图形:圆绕圆心旋转任意角度,都能和原来的图形重合.这就是圆的旋转不变性.二、垂径定理及推论1.垂径定理垂直于弦的直径________这条弦,并且________弦所对的两条弧.2.推论1(1)平分弦(________)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过________,并且平分弦所对的________弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2圆的两条平行弦所夹的弧________.4.(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.若一条直线具备这五项中任意两项,则必具备另外三项.三、圆心角、弧、弦之间的关系1.定理在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.2.推论12\n同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,则其余对应的两项也成立.四、圆心角与圆周角1.定义顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.2.性质(1)圆心角的度数等于它所对的______的度数.(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.(3)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________.(4)半圆(或直径)所对的圆周角是______,90°的圆周角所对的弦是________.五、圆内接四边形的性质圆内接四边形的对角互补.自主测试1.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为(  )A.B.2C.D.2.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为(  )12\n5.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M,N两点,若点M的坐标是(-4,-2),则弦MN的长为__________.(第5题图)考点一、垂径定理及推论【例1】在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为(  )12\nA.6分米B.8分米C.10分米D.12分米分析:如图,油面AB上升1分米得到油面CD,依题意得AB=6,CD=8,过O点作AB的垂线,垂足为E,交CD于F点,连接OA,OC,由垂径定理,得AE=AB=3,CF=CD=4,设OE=x,则OF=x-1,在Rt△OAE中,OA2=AE2+OE2,在Rt△OCF中,OC2=CF2+OF2,由OA=OC,列方程求x即可求得半径OA,得出直径MN.解析:如图,依题意得AB=6,CD=8,过O点作AB的垂线,垂足为E,交CD于F点,连接OA,OC,由垂径定理,得AE=AB=3,CF=CD=4,设OE=x,则OF=x-1,在Rt△OAE中,OA2=AE2+OE2,在Rt△OCF中,OC2=CF2+OF2,∵OA=OC,∴32+x2=42+(x-1)2,解得x=4,∴半径OA==5,∴直径MN=2OA=10(分米).故选C.答案:C方法总结有关弦长、弦心距与半径的计算,常作垂直于弦的直径,利用垂径定理和解直角三角形来达到求解的目的.触类旁通1如图所示,若⊙O的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离为5cm,则弦AB的长为__________cm.考点二、圆心(周)角、弧、弦之间的关系【例2】如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD,AD.12\n(1)求证:DB平分∠ADC;(2)若BE=3,ED=6,求AB的长.解:(1)证明:∵AB=BC,∴.∴∠ADB=∠BDC,∴DB平分∠ADC.(2)由(1)知,∴∠BAE=∠ADB.∵∠ABE=∠ABD,∴△ABE∽△DBA.∴=.∵BE=3,ED=6,∴BD=9.∴AB2=BE·BD=3×9=27.∴AB=3.方法总结圆心角、弧、弦之间的关系定理,提供了从圆心角到弧到弦的转化方式,为我们证明角相等、线段相等和弧相等提供了新思路,解题时要根据具体条件灵活选择应用.触类旁通2如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为(  )A.40°B.50°C.80°D.90°考点三、圆周角定理及推论【例3】如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=(  )A.116°B.32°12\nC.58°D.64°解析:根据圆周角定理求得,∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半),∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°-∠AOD.还有一种解法,即利用直径所对的圆周角等于90°,可得∠ADB=90°,则∠DAB=90°-∠ABD=32°,∵∠DAB=∠DCB,∴∠DCB=32°.答案:B方法总结求圆中角的度数时,通常要利用圆周角与圆心角或圆心角与弧之间的关系.触类旁通3如图,点A,B,C,D都在⊙O上,的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=__________.A.CM=DMB.C.∠ACD=∠ADCD.OM=MD3.(2022浙江湖州)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是(  )12\n(第3题图)A.45°B.85°C.90°D.95°4.(2022浙江衢州)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为__________mm.7.(2022湖南长沙)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°.12\n(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为(  )A.5B.4C.3D.22.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为(  )A.B.C.D.3.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是(  )A.16     B.10C.8D.64.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为(  )12\n(第4题图)A.12个单位B.10个单位C.4个单位D.15个单位5.已知如图,在圆内接四边形ABCD中,∠B=30°,则∠D=__________.(第5题图)6.如图,过A,C,D三点的圆的圆心为E,过B,F,E三点的圆的圆心为D,如果∠A=63°,那么∠DBE=__________.(第6题图)7.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=4,则⊙O的直径等于________.(第7题图)8.如图,在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,BC=AF,延长DF与BA的延长线交于点E.求证:12\n(1)△ABD为等腰三角形;(2)AC·AF=DF·FE.参考答案导学必备知识自主测试1.A 2.D 3.60° 4.90°5.3 如图,过点A作AB⊥MN,连接AM,设MB为x,则AM=AO=4-x.在Rt△AMB中,∵AM2=MB2+AB2,∴(4-x)2=x2+22,解得x=.∴MN=2MB=3.探究考点方法触类旁通1.24 连接OA,当OP⊥AB时,OP最短,此时OP=5cm,且AB=2AP.在Rt△AOP中,AP===12,所以AB=24cm.触类旁通2.B 由题意,得∠A=∠C=40°,由直径所对的圆周角是直角,得∠ADB=90°,根据直角三角形两锐角互余或三角形内角和定理得∠A+∠ABD=90°,从而得∠ABD=50°.触类旁通3.48° 因为的度数等于84°,所以∠COD=84°.因为OC=OD,所以∠OCD=48°.因为CA是∠OCD的平分线,所以∠ACD=∠ACO=24°,因为OA=OC,所以∠OAC=∠ACO=24°,因为∠ABD=∠ACD=24°,所以∠ABD+∠CAO=48°.品鉴经典考题1.A ∵OA⊥OB,∴∠AOB=90°,∴∠ACB=45°.故选A.2.D ∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即CB=DB,选项B成立;12\n在△ACM和△ADM中,∵AM=AM,∠AMC=∠AMD=90°,CM=DM,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选D.3.B ∵AC是⊙O的直径,∴∠ABC=90°.∵∠ABC的平分线BD交⊙O于点D,∴∠ABD=45°.∵∠C=50°,∴∠D=50°,∴∠BAD的度数是180°-45°-50°=85°.4.8 如图所示,在⊙O中,连接OA,过点O作OD⊥AB于点D,则AB=2AD.∵钢珠的直径是10mm,∴钢珠的半径是5mm.∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm.在Rt△AOD中,∵AD===4(mm).∴AB=2AD=2×4=8(mm).故答案为8.5.2 ∵AB是⊙O的弦,OC⊥AB于C,AB=2,∴BC=AB=.∵OC=1,∴在Rt△OBC中,OB===2.故答案为2.6.150 因为∠AOC=60°,则它所对的弧度为60°,所以∠ABC所对的弧度为300°.因为∠ABC是圆周角,所以∠ABC=150°.7.(1)证明:在△ABC中,∵∠BAC=∠APC=60°,∠APC=∠ABC,∴∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°,∴△ABC是等边三角形.(2)解:如图,连接OB,则OB=8,∠OBD=30°.又∵OD⊥BC于D,∴OD=OB=4.研习预测试题12\n1.C 2.C 3.A 4.B5.150° 6.18°7.5 连接AO并延长交圆于点E,连接BE.(如图)∵AE为⊙O的直径,∴∠ABE=90°.∴∠ABE=∠ADC.又∵∠AEB=∠ACD,∴△ABE∽△ADC.∴=.∵在Rt△ADC中,AC=5,DC=3,∴AD=4.∴AE=5.8.证明:(1)由圆的性质知∠MCD=∠DAB,∠DCA=∠DBA,而∠MCD=∠DCA,∴∠DBA=∠DAB,故△ABD为等腰三角形.(2)∵∠DBA=∠DAB,∴.又∵BC=AF,∴,∠CDB=∠FDA,∴,∴CD=DF.由“圆的内接四边形外角等于它的内对角”知,∠AFE=∠DBA=∠DCA,①∠FAE=∠BDE.∴∠CDA=∠CDB+∠BDA=∠FDA+∠BDA=∠BDE=∠FAE,②由①②得△CDA∽△FAE.∴=,∴AC·AF=CD·FE.而CD=DF,∴AC·AF=DF·FE.12

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:26:51 页数:12
价格:¥3 大小:11.68 MB
文章作者:U-336598

推荐特供

MORE