首页

【中考12年】浙江省绍兴市2001-2022年中考数学试题分类解析 专题08 平面几何基础

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/12

2/12

剩余10页未读,查看更多内容需下载

【中考12年】浙江省绍兴市2022-2022年中考数学试题分类解析专题08平面几何基础选择题1.(2022年浙江绍兴4分)4张扑克牌如图(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左数起是【】A.第一张B.第二张C.第三张D.第四张2.(2022年浙江绍兴4分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是【】A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【答案】D。【考点】轴对称的性质,等边三角形的判定。【分析】根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形。故选D。3.(2022年浙江绍兴4分)学校篮球场的长是28米,宽是【】(A)5米     (B)15米      (C) 28米      (D)34米【答案】B。【考点】数学常识。【分析】学校篮球场的长是28米,宽应小于28米,选项中只有15米和5米小于28米,而5米12\n作为篮球场的宽度来说显然太小。故选B。4.(2022年浙江绍兴4分)“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做【】(A)代入法    (B)换元法     (C)数形结合     (D)分类讨论5.(2022年浙江绍兴4分)吋是电视机常用规格之一,1吋约为拇指上面一节的长,则7吋长相当于【  】A.课本的宽度B.课桌的宽度C.黑板的高度D.粉笔的长度【答案】A。【考点】数学常识。【分析】拇指上面一节的长约为3cm左右,则7时长约为21cm左右,相当于课本的宽度。故选A。6.(2022年浙江绍兴4分)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有【  】A.2对B.3对C.4对D.6对12\n7.(2022年浙江绍兴4分)下列名人中:①鲁迅;②姚明;③刘徽;④杨利伟;⑤高斯;⑥贝多芬;⑦陈景润.其中是数学家的为【】A.①③⑤B.②④⑥C.③⑤⑦D.④⑤⑥【答案】C。【考点】数学常识。【分析】所给人名中,是数学家的为③刘徽;⑤高斯;⑦陈景润。故选C。8.(2022年浙江绍兴4分)拃是姆指和食指在平面上伸直时,两者端点之间的距离.则以下估计正确的是【】A.课本的宽度约为4拃B.课桌的高度约为4拃C.黑板的长度约为4拃D.字典的厚度约为4拃【答案】B。【考点】数学常识。【分析】1拃是姆指和食指在平面上伸直时,两者端点之间的距离,正常人大约是20--30厘米,所以课桌的高度约为4拃。故选B。9.(2022年浙江绍兴4分)下列各图中,为轴对称图形的是【】10.(2022年浙江绍兴4分)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是【】12\nA、17°B、34°C、56°D、68°11.(2022年浙江绍兴4分)如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为【】A、7  B、14  C、17  D、20 二、填空题1.(2022年浙江绍兴3分)已知∠α与∠β互余,且∠α=15°,则∠β的补角为▲度.12\n2.(2022年浙江绍兴3分)若一个三角形的三边长均满足方程,则此三角形的周长为▲.当2为腰,4为底时4-2≠<2<4+2不能构成三角形;当等腰三角形的三边分别都为4,或者都为2时,构成等边三角形,周长分别为6,12。∴此三角形的周长是6或10或12。3.(2022年浙江绍兴5分)做如下操作:在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的像与△ACD重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线和高互相重合.由上述操作可得出的是▲(将正确结论的序号都填上).12\n三、解答题1.(2022年浙江绍兴10分)如图,在正方形网络上有一个△ABC.(1)作△ABC关于直线MN的对称图形(不写作法);(2)若网络上的最小正方形的边长为1,求△ABC的面积.12\n(2)应用勾股定理求出三边长,由勾股定理的逆定理判断出△ABC是直角三角形,面积可求。2.(2022年浙江绍兴8分)如图,在网格中有两个全等的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图(1)、(2)中画出两种不同的拼法.12\n3.(2022年浙江绍兴8分)如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图1~3中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图乙与图丙)【答案】解:不同的画法举例如下(答案不唯一):【考点】应用和设计作图(轴对称)。【分析】根据轴对称图形的判定作图,答案不唯一。4.(2022年浙江绍兴8分)在平面直角坐标系中,已知△OAB,A(0,-3),B(-2,0).12\n(1)将△OAB关于点P(1,0)对称,在图1中画出对称后的图形,并涂黑;(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑.【分析】根据中心对称和平移的性质作图。5.(2022年浙江绍兴8分)在黑板报的设计中,小敏遇到了如下的问题:在如图中,直线l与AB垂直,要作△ABC关于l的轴对称图形.小敏已作出了一步,请你用直尺和圆规作出这个图形的其余部分,保留作图痕迹,并写出相应的作法.12\n作法:(1)以B为圆心,BA为半径作弧,与AB的延长线交于点P;▲就是所要作的轴对称图形.6.(2022年浙江绍兴8分)分别按下列要求解答:(1)在图1中,将△ABC先向左平移5个单位,再作关于直线AB的轴对称图形,经两次变换后得到△A1B1C1.画出△A1B1C1;(2)在图2中,△ABC经变换得到△A2B2C2,描述变换过程.12\n7.(2022年浙江绍兴8分)分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.12\n12

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:14:10 页数:12
价格:¥3 大小:642.39 KB
文章作者:U-336598

推荐特供

MORE