首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
京津沪渝4市2022年中考数学分类解析 专题12 押轴题
京津沪渝4市2022年中考数学分类解析 专题12 押轴题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/31
2
/31
剩余29页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
京津沪渝4市2022年中考数学分类解析专题12押轴题一、选择题1.(2022年北京市4分)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是【】2.(2022年天津市3分)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为【 】\nA.0B.1C.2D.33.(2022年上海市4分)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是【】(A)∠BDC=∠BCD(B)∠ABC=∠DAB(C)∠ADB=∠DAC(D)∠AOB=∠BOC【答案】C。\n4.(2022年重庆市A4分)一次函数、二次函数和反比例函数在同一直角坐标系中图象如图,A点为(-2,0)。则下列结论中,正确的是【】 A. B. C. D.5.(2022年重庆市B4分)\n如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A。C分别在x轴、y轴上,反比例函数的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN。下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=450,MN=2,则点C的坐标为。其中正确的个数是【】 A.1 B.2 C.3 D.4\n二、填空题1.(2022年北京市4分)如图,在平面直角坐标系中,已知直线l:,双曲线。在l上取点A1,过点A1作轴的垂线交双曲线于点B1,过点B1作轴的垂线交于点A2,请继续操作并探究:过点A2作轴的垂线交双曲线于点B2,过点B2作轴的垂线交于点A3,…,这样依次得到上的点A1,A2,A3,…,An,…。记点An的横坐标为,若,则=▲,=▲;若要将上述操作无限次地进行下去,则不能取的值是▲.\n2.(2022年天津市3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(1)△ABC的面积等于 ▲ ;(2)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明) ▲ .\n3.(2022年上海市4分)如图,在△ABC中,AB=AC,BC=8,,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为▲.【答案】。\n4.(2022年重庆市A4分)如图,菱形OABC的顶点O是坐标原点,顶点A在x的正半轴上,顶点B、C均在第一象限,OA=2,∠AOC=600,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面的点B′和点C′处,且∠C′DB′=600。若某反比例函数的图象经过点B′,则这个反比例函数的解析式为▲。5.(2022年重庆市B4分)如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴。垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为▲。\n三、解答题1.(2022年北京市7分)在△ABC中,AB=AC,∠BAC=(),将线段BC绕点B逆时针旋转60°得到线段BD。(1)如图1,直接写出∠ABD的大小(用含的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值。\n\n2.(2022年北京市8分)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C的关联点。已知点D(,),E(0,-2),F(,0)(1)当⊙O的半径为1时,①在点D,E,F中,⊙O的关联点是▲;②过点F作直线交y轴正半轴于点G,使∠GFO=30°,若直线上的点P(m,n)是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围。\n\n②若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°,进而得出PC的长,进而得出点P到圆心的距离d满足0≤d≤2r,再考虑临界点位置的P点,进而得出m的取值范围。(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点;再考虑临界情况,即恰好E、F点为⊙K的关联时,则KF=2KN=EF=2,即可得出圆的半径r的取值范围。3.(2022年天津市10分)在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E在OB上,且∠OAE=∠OBA.(1)如图①,求点E的坐标;(2)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示,并求出使取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).\n\n4.(2022年天津市10分)已知抛物线a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(1)求y1与x之间的函数关系式;(2)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).①求y2与x之间的函数关系式;②当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.\n\n使y1<y2恒成立,只要抛物线方向向下及且顶点(1,\n)在x轴下方,因为3-t<0,只要3t-11>0,解得t>,符合题意;若3t-11=0,,即t=也符合题意。5.(2022年上海市12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=1200.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.\n(8,0)。6.(2022年上海市14分)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连接QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;\n(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.\n7.(2022年重庆市A12分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点。①若点P在抛物线上,且,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。\n\n8.(2022年重庆市A12分)已知,如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD。以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=300,∠AED=900。(1)求△AED的周长;(2)若△AED以每秒2个长度单位的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动。设移动时间为t秒,△A0E0D0与△BDC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转,在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q。是否存在这样的,使△BPQ为等腰三角形?若存在,求出的度数;若不存在,请说明理由。【答案】解:(1)在平行四边形ABCD中,BC=6,∴AD=BC=6。∵在Rt△AED中,∠EAD=300,∠AED=900,∴DE=3,AE=。\n\n9.(2022年重庆市B12分)如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。\n\n【分析】(1)由B(5,0),C(0,5),应用待定系数法即可求直线BC与抛物线的解析式。(2)构造MN关于点M横坐标的函数关系式,应用二次函数最值原理求解。(3)根据S1=6S2求得BC与PQ的距离h,从而求得PQ由BC平移的距离,根据平移的性质求得PQ的解析式,与抛物线联立,即可求得点P的坐标。10.(2022年重庆市B12分)已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF。如图1,现有一张硬纸片△GMN,∠NGM=900,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上。如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ。当点N到达终点B时,△GMNP和点同时停止运动。设运动时间为t秒,解答问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形,若存在,求出t的值;若不存在,说明理由;(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S,请直接写出S与t的函数关系式以及自变量t的取值范围。\n\n\n\n
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
京津沪渝4市2022年中考数学分类解析 专题11 圆
京津沪渝4市2022年中考数学分类解析 专题10 四边形
京津沪渝4市2022年中考数学分类解析 专题09 三角形
京津沪渝4市2022年中考数学分类解析 专题08 平面几何基础
京津沪渝4市2022年中考数学分类解析 专题07 统计与概率
京津沪渝4市2022年中考数学分类解析 专题06 函数的图像与性质
京津沪渝4市2022年中考数学分类解析 专题05 数量和位置变化
京津沪渝4市2022年中考数学分类解析 专题04 图形的变换
京津沪渝4市2022年中考数学分类解析 专题02 代数式和因式分解
京津沪渝4市2022年中考数学分类解析 专题01 实数
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 20:56:55
页数:31
价格:¥3
大小:1.44 MB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划