首页

四川省雅安市2022年中考数学真题试题(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/17

2/17

剩余15页未读,查看更多内容需下载

2022年四川省雅安市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)每小题的四个选项中,有且仅有一个正确的。1.(3分)(2022•雅安)﹣的相反数是(  ) A.2B.﹣2C.D.﹣考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣的相反数是.故选C.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键. 2.(3分)(2022•雅安)五边形的内角和为(  ) A.720°B.540°C.360°D.180°考点:多边形内角与外角.分析:利用多边形的内角和定理即可求解.解答:解:五边形的内角和为:(5﹣2)×180=540°.故选B.点评:本题考查了多边形的内角和定理的计算公式,理解公式是关键. 3.(3分)(2022•雅安)已知x1,x2是一元二次方程x2﹣2x=0的两根,则x1+x2的值是(  ) A.0B.2C.﹣2D.4考点:根与系数的关系.专题:计算题.分析:利用根与系数的关系即可求出两根之和.解答:解:∵x1,x2是一元二次方程x2﹣2x=0的两根,∴x1+x2=2.故选B点评:此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 4.(3分)(2022•雅安)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为(  ) A.50°B.60°C.70°D.100°-17-\n考点:平行线的性质;角平分线的定义.分析:根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解.解答:解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CD,∴∠BAD=∠D,∴∠CAD=∠D,在△ACD中,∠C+∠D+∠CAD=180°,∴80°+∠D+∠D=180°,解得∠D=50°.故选A.点评:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键. 5.(3分)(2022•雅安)下列计算正确的是(  ) A.(﹣2)2=﹣2B.a2+a3=a5C.(3a2)2=3a4D.x6÷x2=x4考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据乘方意义可得(﹣2)2=4,根据合并同类项法则可判断出B的正误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可判断出C的正误;根据同底数幂的除法法则:底数不变,指数相减可判断出D的正误.解答:解:A、(﹣2)2=4,故此选项错误;B、a2、a3不是同类项,不能合并,故此选项错误;C、(3a2)2=9a4,故此选项错误;D、x6÷x2=x4,故此选项正确;故选:D.点评:此题主要考查了乘方、合并同类项法则、幂的乘方、同底数幂的除法,关键是熟练掌握计算法则. 6.(3分)(2022•雅安)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为(  ) A.3.5,3B.3,4C.3,3.5D.4,3考点:众数;算术平均数;中位数.分析:根据题意可知x=2,然后根据平均数、中位数的定义求解即可.解答:解:∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=3.5中位数为:3.-17-\n故选A.点评:本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键. 7.(3分)(2022•雅安)不等式组的整数解有(  )个. A.1B.2C.3D.4考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再确定符合题意的整数解的个数即可得出答案.解答:解:由2x﹣1<3,解得:x<2,由﹣≤1,解得x≥﹣2,故不等式组的解为:﹣2≤x<2,所以整数解为:﹣2,﹣1,0,1.共有4个.故选D.点评:本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值. 8.(3分)(2022•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为(  ) A.1:3B.2:3C.1:4D.2:5考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.分析:先利用SAS证明△ADE≌△CFE(SAS),得出S△ADE=S△CFE,再由DE为中位线,判断△ADE∽△ABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S△ADE:S△ABC=1:4,则S△ADE:S四边形BCED=1:3,进而得出S△CEF:S四边形BCED=1:3.解答:解:∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,-17-\n∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.故选A.点评:本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理.关键是利用中位线判断相似三角形及相似比. 9.(3分)(2022•雅安)将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为(  ) A.y=(x﹣2)2B.y=(x﹣2)2+6C.y=x2+6D.y=x2考点:二次函数图象与几何变换.分析:根据“左加右减、上加下减”的原则进行解答即可.解答:解:将抛物线y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=(x﹣1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3﹣3,即y=x2.故选D.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 10.(3分)(2022•雅安)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为(  ) A.B.C.D.考点:切线的性质;圆周角定理;特殊角的三角函数值.分析:首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值.解答:解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,-17-\n∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.点评:此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用. 11.(3分)(2022•雅安)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为(  ) A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解答:解:∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线x=﹣>0,∴b<0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一三象限,且与y轴的负半轴相交,反比例函数y=图象在第一三象限,只有B选项图象符合.故选B.点评:本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键. -17-\n12.(3分)(2022•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有(  )个. A.2B.3C.4D.5考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,①正确.∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°②正确,∵BC=CD,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,-17-\n∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键. 二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2022•雅安)已知一组数2,4,8,16,32,…,按此规律,则第n个数是 2n .考点:规律型:数字的变化类.分析:先观察所给的数,得出第几个数正好是2的几次方,从而得出第n个数是2的n次方.解答:解:∵第一个数是2=21,第二个数是4=22,第三个数是8=23,∴第n个数是2n;故答案为:2n.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题,本题的关键是第几个数就是2的几次方. 14.(3分)(2022•雅安)从﹣1,0,,π,3中随机任取一数,取到无理数的概率是  .考点:概率公式;无理数.分析:数据﹣1,0,,π,3中无理数只有π,根据概率公式求解即可.解答:解∵数据﹣1,0,,π,3中无理数只有π,∴取到无理数的概率为:,故答案为:点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. -17-\n15.(3分)(2022•雅安)若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为 5 .考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.专题:分类讨论.分析:先根据非负数的性质列式求出a、b再分情况讨论求解即可.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.故答案为:5.点评:本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解. 16.(3分)(2022•雅安)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=  ..考点:相似三角形的判定与性质;平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而可判定△BEF∽△DCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=.故答案为:.-17-\n点评:此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DCF,再利用相似三角形的对应边成比例的性质求解. 17.(3分)(2022•雅安)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标 (0,2),(0,﹣2),(﹣3,0),(3,0) .考点:勾股定理;坐标与图形性质.专题:分类讨论.分析:需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标.解答:解:如图,①当点C位于y轴上时,设C(0,b).则+=6,解得,b=2或b=﹣2,此时C(0,2),或C(0,﹣2).如图,②当点C位于x轴上时,设C(a,0).则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6,解得a=3或a=﹣3,此时C(﹣3,0),或C(3,0).综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).点评:本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标. 三、解答题(共7小题,满分69分)18.(12分)(2022•雅安)(1)计算:8+|﹣2|﹣4sin45°﹣(2)先化简,再求值:(1﹣)÷,其中m=2.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.-17-\n分析:(1)根据绝对值、特殊角的三角函数值、负指数幂的定义解答;(2)将括号内的部分通分后相减,再将除式因式分解,然后将除法转化为乘法解答.解答:解:(1)原式=8+2﹣4×﹣=8+2﹣2﹣3=7﹣2;(2)原式=(﹣)÷=•=,当m=2时,原式==.点评:本题考查了实数的运算及分式的化简求值,熟悉绝对值、特殊角的三角函数值、负指数幂的运算法则及能熟练因式分解是解题的关键. 19.(9分)(2022•雅安)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,-17-\n∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.点评:此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质. 20.(8分)(2022•雅安)甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)考点:二元一次方程组的应用.分析:设乙的速度为x米/分,则甲的速度为2.5x米/分,环形场地的周长为y米,根据环形问题的数量关系,同时、同地、同向而行首次相遇快者走的路程﹣慢者走的路程=环形周长建立方程求出其解即可.解答:解:设乙的速度为x米/秒,则甲的速度为2.5x米/秒,环形场地的周长为y米,由题意,得,解得:,∴甲的速度为:2.5×150=375米/分.答:乙的速度为150米/分,则甲的速度为375米/分,环形场地的周长为900米.点评:本题考查了列二元一次方程组解环形问题的运用,二元一次方程组的解法的运用,解答时运用环形问题的数量关系建立方程是关键. 21.(8分)(2022•雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 200 人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)-17-\n考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.解答:解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键. 22.(10分)(2022•雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)-17-\n考点:反比例函数综合题.专题:综合题.分析:(1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式;(2)求出反比例函数和一次函数的另外一个交点即可;(3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可.解答:解:(1)过点A作AD⊥x轴于D,∵C的坐标为(﹣2,0),A的坐标为(n,6),∴AD=6,CD=n+2,∵tan∠ACO=2,∴==2,解得:n=1,故A(1,6),∴m=1×6=6,∴反比例函数表达式为:y=,又∵点A、C在直线y=kx+b上,∴,解得:,∴一次函数的表达式为:y=2x+4;(2)由得:=2x+4,解得:x=1或x=﹣3,∵A(1,6),∴B(﹣3,﹣2);(3)分两种情况:①当AE⊥x轴时,即点E与点D重合,-17-\n此时E1(1,0);②当EA⊥AC时,此时△ADE∽△CDA,则=,DE==12,又∵D的坐标为(1,0),∴E2(13,0).点评:本题考查了反比例函数的综合题,涉及了点的坐标的求法以及待定系数法求函数解析式的知识,主要考查学生的计算能力和观察图形的能力. 23.(10分)(2022•雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.-17-\n(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)考点:切线的判定与性质;扇形面积的计算.分析:(1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S阴影=S扇形OBD﹣S△BOD,即可求得答案.解答:(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.点评:此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用. -17-\n24.(12分)(2022•雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,﹣m2﹣2m+3),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可.解答:解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;-17-\n(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).点评:此题主要考查了待定系数法求二次函数解析式以及二次函数的最值,根据点的坐标表示出线段的长是表示出三角形的面积的基础. -17-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:46:16 页数:17
价格:¥3 大小:329.76 KB
文章作者:U-336598

推荐特供

MORE