首页

冀教版九下数学29.5正多边形和圆教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

29.5正多边形和圆1.了解正多边形与圆的有关概念;2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会运用正多边形和圆的有关知识画正多边形.(重点)一、情境导入生日宴会上,佳乐等6位同学一起过生日,他想把如图所示蛋糕平均分成6份,你能帮他做到吗?二、合作探究探究点一:圆的内接正多边形的相关计算如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切.(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r∶a及r∶b的值;(2)求正六边形T1,T2的面积比S1∶S2的值.解:(1)连接圆心O和T1的6个顶点可得6个全等的正三角形.所以r∶a=1∶1.连接圆心O和T2相邻的两个顶点,得以圆O的半径为高的正三角形,所以r∶b=∶2;(2)正六边形T1与T2的边长比是∶2,所以S1∶S2=3∶4.方法总结:解答此题的关键是根据题意画出图形,再由三角函数的定义及特殊角的三角函数值求解.探究点二:与正多边形相关的计算【类型一】求正多边形的中心角已知一个正多边形的每个内角均为108°,则它的中心角为________度.解析:每个内角为108°,则每个外角为72°.根据多边形的外角和等于360°,∴正多边形的边数为5,则其中心角为360°÷5=72°.故填72.方法总结:本题考查了正多边形的内角与外角,对于正多边形,利用多边形的外角和除以每一个外角的度数求边数更简便.【类型二】求正多边形的边长和面积已知正六边形ABCDEF的外接圆半径是R,求正六边形的边长a和面积S. 解:连接OA、OB,过O作OH⊥AB,则∠AOH==30°,∴AH=R,∴a=2AH=R.由勾股定理可得OH2=R2-(R)2,∴OH=R,∴S=·a·OH×6=·R·R·6=R2.方法总结:本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.三、板书设计教学过程中,强调正多边形与圆的联系,将正多边形放在圆中便于解决、探究更多关于正多边形的问题.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-01-01 20:00:06 页数:2
价格:¥3 大小:758.54 KB
文章作者:随遇而安

推荐特供

MORE