首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
宜宾专版2022届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题
宜宾专版2022届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精讲试题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第十四讲 全等三角形,考标完全解读)考点考试内容考试要求全等三角形全等三角形的定义了解全等三角形的性质理解全等三角形的判定掌握,感受宜宾中考)1.(2022宜宾中考)如图,已知:在△AFD和△CEB中,点A,E,F,C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.证明:∵AD∥BC,∴∠A=∠C.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.∵在△ADF和△CBE中,∴△ADF≌△CBE(A.A.S.),∴AD=BC.2.(2022宜宾中考)如图,AC=DC,BC=EC,∠ACD=∠BCE,求证:∠A=∠D.证明:∵∠ACD=∠BCE,∴∠ACD+∠ACE=∠BCE+∠ACE,即∠ACB=∠DCE.又∵AC=DC,BC=EC,∴△ACB≌△DCE,∴∠A=∠D.7\n3.(2022宜宾中考)如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.证明:∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,∴△ADB≌△BCA(A.S.A.),∴BC=AD.4.(2022宜宾中考)如图,已知点B,E,C,F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.证明:∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,∴△ABC≌△DEF(A.A.S.);∴BC=EF,∴BC-CE=EF-CE,即BE=CF.,核心知识梳理) 全等三角形的概念1.能够__完全重合__的两个三角形叫做全等三角形. 三角形全等的判定2.一般三角形全等的判定定理:(1)边角边定理:有两边和它们的__夹角__对应相等的两个三角形全等;(可简写成“边角边”或“S.A.S.”)(2)角边角定理:有两角和它们的__夹边__对应相等的两个三角形全等;(可简写成“角边角”或“A.S.A.”)(3)角角边定理:有两角和__一边__对应相等的两个三角形全等;(可简写成“角角边”或“A.A.S.”)(4)边边边定理:有__三边__对应相等的两个三角形全等.(可简写成“边边边”或“S.S.S.”)3.直角三角形全等的判定:对于特殊的直角三角形,除以上判定以外,还有H.L.定理(斜边、直角边定理):有__斜边__和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“H.L.”).4.三角形全等的证明思路7\n,重点难点解析) 全等三角形的判定与性质【例1】(2022苏州中考)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数. 【解析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.【答案】解:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∴△AEC≌△BED(A.S.A.).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于中等题型.【针对训练】1.(贵阳中考)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是( B ) A.∠A=∠CB.∠D=∠BC.AD∥BCD.DF∥BE7\n2.(2022温州中考)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE.在△ABC和△AED中,∴△ABC≌△AED(S.A.S.);(2)当∠B=140°时,∠E=140°.又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°-140°×2-90°×2=80°. 全等三角形的应用【例2】如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长am,FG的长bm.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?【解析】给出的三组相等线段都分布在△BDE,△CFG中,判断他们全等,条件充分,利用全等的性质容易得出∠B=∠C.【答案】解:这种做法合理.理由:在△BDE和△CFG中,∴△BDE≌△CFG(S.S.S.),∴∠B=∠C.7\n【点评】本题考查了全等三角形的应用;判断两个角相等,或者边相等,可以把他们分别放到两个可能全等的三角形中,围绕全等找判断全等的条件.【针对训练】3.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的依据是__S.S.S.证明△COM≌△CON__. 直角三角形的判定与应用【例3】如图,AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:Rt△BCE≌Rt△DCF.【解析】连接BD,根据等腰三角形的性质和判定,求出BC=DC,根据直角三角形全等的判定定理HL推出两三角形全等即可.【答案】证明:连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC=90°,∴∠CBD=∠CDB,∴BC=DC,∵BE⊥EF,DF⊥EF,∴∠E=∠F=90°,在Rt△BCE和Rt△DCF中,∴Rt△BCE≌Rt△DCF(H.L.).【点评】本题考查了等腰三角形的性质和判定,直角三角形全等的判定的应用,主要培养学生运用定理进行推理的能力,题型较好,难度适中.【针对训练】4.如图所示,∠C=∠D=90°,可使用“H.L.”判定Rt△ABC与Rt△ABD全等,则应添加一个条件是__AC=AD(答案不唯一)__.7\n,(第4题图)) ,(第5题图))5.如图,AC与BD相交于点O,DA⊥AC,DB⊥BC,AC=BD.说明OD=OC成立的理由.证明:∵DA⊥AC,DB⊥BC,∴∠A=∠B=90°,在Rt△ADC和Rt△BCD中,∴Rt△ADC≌Rt△BCD(H.L.),∴∠BDC=∠ACD,∴OD=OC.,当堂过关检测)1.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( A ) A.S.S.S. B.S.A.S.C.A.S.A.D.A.A.S.2.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为( C )A.44°B.66°C.96°D.92°,(第2题图)) ,(第3题图))3.小涛在家打扫卫生,一不小心把一块三角形的玻璃台板打碎了,如图,如果要配一块完全一样的玻璃,至少要带__2__块,序号分别是__3,4__.4.(2022齐齐哈尔中考)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连结EF,若AC=10,求EF的长.7\n解:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C.∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.7
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
宜宾专版2022年中考数学总复习第1编教材知识梳理篇第4章图形的初步认识与三角形第14讲全等三角形精练试题
宜宾专版2022届中考数学第1编教材知识梳理篇第7章图形与变换第21讲图形的对称平移与旋转精讲试题
宜宾专版2022届中考数学第1编教材知识梳理篇第7章图形与变换第20讲视图与投影精讲试题
宜宾专版2022届中考数学第1编教材知识梳理篇第6章图形的相似与解直角三角形第18讲相似精讲试题
宜宾专版2022届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第15讲等腰三角形与直角三角形精讲试题
宜宾专版2022届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第13讲三角形及其性质精讲试题
宜宾专版2022届中考数学第1编教材知识梳理篇第4章图形的初步认识与三角形第12讲相交线与平行线精讲试题
宜宾专版2022届中考数学第1编教材知识梳理篇第1章数与式第3讲分式精讲试题
宜宾专版2022届中考数学第1编教材知识梳理篇第1章数与式第2讲整式精讲试题
宜宾专版2022届中考数学第1编教材知识梳理篇第1章数与式第1讲实数精讲试题
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 20:42:39
页数:7
价格:¥3
大小:148.39 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划