首页

山东省济宁市2022年中考数学三模试卷(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

剩余16页未读,查看更多内容需下载

山东省济宁市2022年中考数学三模试卷一、选择题(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2022•济宁三模)的算术平方根为(  ) A.2B.﹣2C.±2D.16考点:算术平方根分析:先计算,再求其算术平方根.解答:解:∵=4,4的算术平方根为2,∴的算术平方根为2,故选A.点评:本题考查了算术平方根的概念.特别注意:应首先计算的值,然后再求算术平方根. 2.(3分)(2022•济宁三模)据萧山区旅游局统计,2022年春节约有359525人来萧旅游,将这个旅游人数(保留三个有效数字)用科学记数法表示为(  ) A.3.59×105B.3.60×105C.3.5×105D.3.6×105考点:科学记数法与有效数字专题:计算题.分析:根据科学记数法与有效数字的定义将359525保留三个有效数字得到3.60×105.解答:解:359525≈3.60×105.故选B.点评:本题考查了科学记数法与有效数字:把一个数表示成a×10n(1≤a<10)叫科学记数法;从一个数的左边第一个不为零的数字数起,到最后一个数字止,所有数字都是这个数的有效数字. 3.(3分)(2022•济宁三模)下列运算正确的是(  ) A.﹣(a﹣1)=﹣a﹣1B.(﹣2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5考点:完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方专题:常规题型.分析:根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.点评:18\n本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键. 4.(3分)(2022•济宁三模)如图,由几个小正方体组成的立体图形的俯视图是(  ) A.B.C.D.考点:简单组合体的三视图分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得:有两列小正方形第一列有3个正方形,第二层最右边有一个正方形.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,考查了学生细心观察能力,属于基础题. 5.(3分)(2022•济宁三模)下列事件中确定事件是(  ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上考点:随机事件分析:确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解答:解:A、掷一枚均匀的硬币,正面朝上是随机事件;B、买一注福利彩票一定会中奖是随机事件;C、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,即确定事件;D、掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上是随机事件.故选C.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.注意确定事件包括必然事件和不可能事件. 18\n6.(3分)(2022•济宁三模)若式子有意义,则x的取值范围为(  ) A.x≥2B.x≠3C.x≥2或x≠3D.x≥2且x≠3考点:二次根式有意义的条件;分式有意义的条件专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.点评:本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 7.(3分)(2022•济宁三模)已知,且﹣1<x﹣y<0,则k的取值范围为(  ) A.﹣1<k<﹣B.0<k<C.0<k<1D.<k<1考点:解一元一次不等式组分析:利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.解答:解:第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1k的取值范围为<k<1.故选D.点评:要求k的取值范围可以通过解方程组,得到关于k的不等式组解决. 8.(3分)(2022•济宁三模)二次函数y1=ax2﹣x+1的图象与y2=﹣2x2图象的形状,开口方向相同,只是位置不同,则二次函数y1的顶点坐标是(  ) A.(﹣,﹣)B.(﹣,)C.(,)D.(,﹣)考点:二次函数的性质分析:因为图象的形状,开口方向相同,所以a=﹣2.利用公式法y=ax2+bx+c的顶点坐标公式即可求.解答:解:根据题意可知,a=﹣2,18\n又∵=﹣,=,∴顶点坐标为(﹣,).故选B.点评:此题考查了二次函数的性质. 9.(3分)(2022•济宁三模)如图,P1是反比例函数y=在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为(  ) A.2B.2﹣1C.2D.2﹣1考点:反比例函数综合题分析:由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标.解答:解:(1)因为△P1OA1为边长是2的等边三角形,所以OC=1,P1C=2×=,所以P1(1,).代入y=,得k=,所以反比例函数的解析式为y=.作P2D⊥A1A2,垂足为D.设A1D=a,则OD=2+a,P2D=a,所以P2(2+a,a).∵P2(2+a,a)在反比例函数的图象上,∴代入y=,得(2+a)•a=,化简得a2+2a﹣1=018\n解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以点A2的坐标为(2,0).故选C.点评:此题综合考查了反比例函数的性质,利用待定系数法求函数的解析式,正三角形的性质等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用. 10.(3分)(2022•济宁三模)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2022个正方形的面积为(  ) A.B.C.D.考点:相似三角形的判定与性质;坐标与图形性质;正方形的性质专题:压轴题;规律型.分析:首先设正方形的面积分别为S1,S2…S2022,由题意可求得S1的值,易证得△BAA1∽△B1A1A2,利用相似三角形的对应边成比例与三角函数的性质,即可求得S2的值,继而求得S3的值,继而可得规律:Sn=5×()2n﹣2,则可求得答案.解答:解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,设正方形的面积分别为S1,S2…S2022,根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x,∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,18\n在直角△ADO中,根据勾股定理,得:AD==,∴AB=AD=BC=,∴S1=5,∵∠DAO+∠ADO=90°,∠DAO+∠BAA1=90°,∴∠ADO=∠BAA1,∴tan∠BAA1===,∴A1B=,∴A1C=BC+A1B=,∴S2=×5=5×()2,∴==,∴A2B1=×=,∴A2C1=B1C1+A2B1=+==×()2,∴S3=×5=5×()4,由此可得:Sn=5×()2n﹣2,∴S2022=5×()2×2022﹣2=5×()4022.故选D.点评:此题考查了相似三角形的判定与性质、正方形的性质以及三角函数等知识.此题难度较大,解题的关键是得到规律Sn=5×()2n﹣2. 二、填空题(本大题共5个小题.每小题3分,共15分.把答案填在题中横线上)11.(3分)(2022•济宁三模)分解因式:2x2+4x+2= 2(x+1)2 .考点:提公因式法与公式法的综合运用分析:先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:2x2+4x+2=2(x2+2x+1)=2(x+1)2.故答案为:2(x+1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.18\n 12.(3分)(2022•济宁三模)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为  cm.考点:垂径定理的应用;勾股定理专题:压轴题;探究型.分析:连接OA,过点O作OD⊥AB于点D,由垂径定理可知,AD=AB=(9﹣1)=4,设OA=r,则OD=r﹣3,在Rt△OAD中利用勾股定理求出r的值即可.解答:解:连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=AB=(9﹣1)=4cm,设OA=r,则OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=42,解得r=cm.故答案为:.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 13.(3分)(2022•济宁三模)化简的结果是 m+1 .考点:分式的混合运算18\n专题:计算题.分析:把原式括号中通分后,利用同分母分式的加法运算法则:分母不变,只把分子相加进行计算,同时将除式的分母利用平方差公式分解因式,并根据除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后即可得到结果.解答:解:(1+)÷=(+)÷=•=•=m+1.故答案为:m+1点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时若分子分母是多项式,应先将多项式分解因式后再约分. 14.(3分)(2022•济宁三模)如图,在矩形ABCD中,AB=3,AD=4,P是AD上一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF=  .考点:矩形的性质;相似三角形的判定与性质专题:动点型.分析:根据△AEP∽△ADC;△DFP∽△DAB找出关系式解答.解答:解:设AP=x,PD=4﹣x,由勾股定理,得AC=BD==5,∵∠PAE=∠CAD,∠AEP=∠ADC=90°,∴Rt△AEP∽Rt△ADC;∴=,即=﹣﹣﹣(1).同理可得Rt△DFP∽Rt△DAB,∴=﹣﹣﹣(2).故(1)+(2)得=,18\n∴PE+PF=.另解:∵四边形ABCD为矩形,∴△OAD为等腰三角形,∴PE+PF等于△OAD腰OA上的高,即Rt△ADC斜边上的高,∴PE+PF==.点评:此题比较简单,根据矩形的性质及相似三角形的性质解答即可. 15.(3分)(2022•济宁三模)将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是 16π+8π cm.考点:弧长的计算;正方形的性质专题:压轴题.分析:可先计算旋转周时,正方形的顶点A所经过的路线的长,可以看出是四段弧长,根据弧长公式计算即可.解答:解:第一次旋转是以点C为圆心,AC为半径,旋转角度是90度,所以弧长==4π;第二次旋转是以点D为圆心,AD为半径,角度是90度,所以弧长==4π;第三次旋转是以点A为圆心,所以没有路程;第四次是以点B为圆心,AB为半径,角度是90度,所以弧长==4π;所以旋转一周的弧长共=4π+8π.所以正方形滚动两周正方形的顶点A所经过的路线的长是16π+8π.点评:本题的关键是理清第一次旋转时的圆心及半径和圆心角的度数,然后利用弧长公式求解. 三、解答题(本大题共8个小题.共55分.解答应写出文字说明、证明过程或演算步骤)16.(4分)(2022•济宁三模)计算:.考点:特殊角的三角函数值;实数的性质;零指数幂专题:计算题.分析:按照实数的运算法则依次计算,注意(﹣2)0=1,|﹣2|=2﹣.解答:解:原式=1﹣3×﹣(2﹣)18\n=1﹣﹣2+=﹣1.点评:本题需注意的知识点是:任何不等于0的数的0次幂是1.负数的绝对值是正数. 17.(4分)(2022•济宁三模)解方程:考点:解分式方程专题:计算题.分析:本题考查解分式方程的能力,观察可得方程最简公分母为x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边都乘以x(x﹣2)得x﹣3(x﹣2)=0,x﹣3x+6=0,﹣2x=﹣6,∴x=3,经检验x=3是原方程的根.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根. 18.(6分)(2022•济宁三模)(1)一个人由山底爬到山顶,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(结果可保留根号).(2)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是: AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等 .证明:考点:解直角三角形的应用-坡度坡角问题;全等三角形的判定与性质分析:(1)由已知可得到山的高度由两部分组成分别是45°和30°所对的高度,所以利用三角函数分别求得这两部分的值,此时山的高度就不难求了;(2)要使AC=BD,可以证明△ABC≌△BAD,从而得到结论.解答:(1)解:依题意,可得山高h=200sin45°+300sin30°=200×+300×=100+150(m)所以山高为(100+150)m.(2)解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明例举(以添加条件AD=BC为例):∵在△ABC与△BAD中,18\n,∴△ABC≌△BAD(SAS).∴AC=BD.点评:(1)考查了坡度坡角的理解及解直角三角形的综合运用.(2)考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角. 19.(6分)(2022•济宁三模)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?考点:一元二次方程的应用专题:增长率问题;优选方案问题;压轴题.分析:(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.解答:解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.点评:本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题. 20.(7分)(2022•济宁三模)“五•一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票.下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;18\n(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?考点:游戏公平性;条形统计图;概率公式;列表法与树状图法分析:(1)首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量,则可补全统计图;(2)根据概率公式直接求解即可求得答案;(3)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较是否相等即可求得答案.解答:解:(1)设D地车票有x张,则x=(x+20+40+30)×10%,解得x=10.即D地车票有10张.补全统计图如图所示.(2)小胡抽到去A地的概率为=.(3)不公平.以列表法说明:小李掷得数字小王掷得数字12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)或者画树状图法说明(如图)18\n由此可知,共有16种等可能结果.其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴小王掷得数字比小李掷得数字小的概率为=.则小王掷得数字不小于小李掷得数字的概率为=.∴这个规则对双方不公平.点评:本题考查的是用列表法或画树状图法求概率与概率公式得到应用.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比. 21.(9分)(2022•济宁三模)如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.18\n考点:反比例函数综合题分析:(1)在直角△AOB中利用三角函数求得A的坐标,然后利用待定系数法即可求得k的值;(2)已知E是DC的中点,则E的纵坐标已知,代入反比例函数的解析式即可求得E的坐标,然后利用待定系数法即可求得直线的解析式;(3)首先求得M、N的坐标,延长DA交y轴于点F,则AF⊥ON,利用勾股定理求得AN和EM的长,即可证得.解答:解:(1)由已知条件得,在Rt△OAB中,OB=2,tan∠AOB=,∴=,∴AB=3,∴A点的坐标为(2,3)…(1分)∴k=xy=6…(2分)(2)∵DC由AB平移得到,点E为DC的中点,∴点E的纵坐标为,…(3分)又∵点E在双曲线上,∴点E的坐标为(4,)…(4分)设直线MN的函数表达式为y=k1x+b,则,解得,∴直线MN的函数表达式为.…(5分)(3)结论:AN=ME…(6分)理由:在表达式中,令y=0可得x=6,令x=0可得y=,∴点M(6,0),N(0,)…(7分)解法一:延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON﹣OF=,∴根据勾股定理可得AN=…(8分)∵CM=6﹣4=2,EC=18\n∴根据勾股定理可得EM=∴AN=ME…(9分)解法二:连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM=,S△AON=…(8分)∴S△EOM=S△AON,∵AN和ME边上的高相等,∴AN=ME…(9分)点评:本题是待定系数法求一次函数的解析式,以及勾股定理的综合应用,求得E的坐标是关键. 22.(9分)(2022•济宁三模)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.求证:BD⊥CF;(3)在(2)小题的条件下,AC与BG的交点为M,当AB=4,AD=时,求线段CM的长.考点:四边形综合题分析:(1)根据△ABC是等腰直角三角形,四边形ADEF是正方形,根据角边角关系证出△BAD≌△CAF,根据全等三角形的对应边相等,即可证得BD=CF;(2)先设BG交AC于点M,根据(1)证出的△BAD≌△CAF,可得∠ABM=∠GCM,又根据对顶角相等,得出△BMA∽△CMG,再根据根据相似三角形的对应角相等,可得∠BGC=∠BAC=90°,即可证出BD⊥CF;(3)首先过点F作FN⊥AC于点N,利用勾股定理即可求得AE,BC的长,继而求得AN,CN的长,又由等角的三角函数值相等,可求得AM的值,从而求出CM的值.解答:(1)解:BD=CF成立.18\n理由:∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAF=∠DAF﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF.(2)证明:设BG交AC于点M,∵△BAD≌△CAF,∴∠ABM=∠GCM,∵∠BMA=∠CMG,∴△BMA∽△CMG,∴∠BGC=∠BAC=90°,∴BD⊥CF.(3)过点F作FN⊥AC于点N,∵在正方形ADEF中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC中,AB=AC=4,∴CN=AC﹣AN=3,BC==4,∴在Rt△FCN中,tan∠FCN==,∴在Rt△ABM中,tan∠ABM=tan∠FCN=,∴AM=AB=,∴CM=AC﹣AM=4﹣=.点评:18\n此题考查了四边形的综合,用到的知识点是相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的性质、矩形的性质、勾股定理以及三角函数等知识,此题综合性很强,难度较大,注意数形结合思想应用. 23.(10分)(2022•济宁三模)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.考点:二次函数综合题专题:综合题;压轴题;数形结合;分类讨论.分析:(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=﹣x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.解答:解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第二象限,即PO的解析式为y=﹣x.18\n设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).点评:本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、全等三角形与相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.18

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:37:30 页数:18
价格:¥3 大小:240.67 KB
文章作者:U-336598

推荐特供

MORE