首页

山东省烟台市2022年中考数学5月模拟试卷(解析版) 新人教版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/22

2/22

剩余20页未读,查看更多内容需下载

2022年山东省烟台市中考数学模拟试卷(5月份)一、选择题(本题共12个小题,每小题4分,满分48分.每小题都给出标号为ABCD四个备选答案,其中有且只有一个是正确的)1.(4分)(2022•烟台模拟)的平方根是(  ) A.2B.±2C.8D.±8考点:立方根;平方根.专题:计算题.分析:先利用立方根的定义求出的值,再利用平方根的定义计算即可得到结果.解答:解:∵=4,4的平方根为±2,∴的平方根为±2.故选B.点评:此题考查了立方根,平方根,熟练掌握各自的定义是解本题的关键. 2.(4分)(2022•烟台模拟)代数式与x﹣2的差是负数,那么x的取值范围是(  ) A.x>1B.x>﹣C.x>﹣D.x<1考点:代数式求值.分析:对题意进行分析,可将其转换为﹣(x﹣2)<0,求x的取值范围,对不等式进行求解即可.解答:解:由题意可知,x取值范围满足﹣(x﹣2)<0,对不等式求解,可得x>1.故选:A.点评:本题考查代数式求值与解不等式的综合运用,看清题意,计算时注意正负号. 3.(4分)(2022•邵阳)下列图形不是轴对称图形的是(  ) A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念,把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形.解答:解:根据轴对称的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形.A.是轴对称图形;故此选项正确;B.是轴对称图形;故此选项正确;C.是中心对称图形;故此选项错误;21\nD.是轴对称图形;故此选项正确;故选:C.点评:此题主要考查了轴对称图形的定义,注意轴对称和轴对称图形的区别:轴对称指的是两个图形;轴对称图形指的是一个图形. 4.(4分)(2022•咸宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为(  ) A.B.C.D.考点:简单几何体的三视图.专题:压轴题.分析:看哪个几何体的三视图中有长方形,圆,及三角形即可.解答:解:A、三视图分别为长方形,三角形,圆,符合题意;B、三视图分别为三角形,三角形,圆及圆心,不符合题意;C、三视图分别为正方形,正方形,正方形,不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,不符合题意;故选A.点评:考查三视图的相关知识;判断出所给几何体的三视图是解决本题的关键. 5.(4分)(2022•广安)下列说法正确的是(  ) A.商家卖鞋,最关心的是鞋码的中位数 B.365人中必有两人阳历生日相同 C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法 D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定考点:方差;全面调查与抽样调查;统计量的选择;可能性的大小.分析:分别利用方差、全面调查与抽样调查、统计量的选择及可能性的大小的知识进行逐项判断即可.解答:解:A、商家卖鞋,最关心的鞋码是众数,故本选项错误;B、365人中可能人人的生日不同,故本选项错误;C、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法,故本选项正确;D、方差越大,越不稳定,故本选项错误;故选C.点评:本题考查了方差、全面调查与抽样调查、统计量的选择及可能性的大小的知识,考查的知识点比较多,但比较简单. 21\n7.(4分)(2022•烟台模拟)在△ABC中,∠A、∠B均为锐角,且,则△ABC是(  ) A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.分析:先根据非负数的性质求出tanB与sinA的值,再根据特殊角的三角函数值求出∠A、∠B的值即可.解答:解:∵,∴,,∴tanB=,∠B=60°,2sinA﹣=0,sinA=,∠A=60°.在△ABC中,∠C=180°﹣60°﹣60°=60°,∴△ABC是等边三角形.故选B.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,并充分利用非负数的性质. 8.(4分)(2022•泰安)二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为(  ) A.﹣3B.3C.﹣6D.9考点:抛物线与x轴的交点.专题:探究型.分析:先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.解答:解:(法1)∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0.=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=﹣m有交点,可见,﹣m≥﹣3,21\n∴m≤3,∴m的最大值为3.故选B.点评:本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键. 9.(4分)(2022•贵港)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于(  ) A.10B.11C.12D.13考点:全等三角形的判定与性质;直角梯形;旋转的性质.专题:压轴题.分析:过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,得出四边形ANCD是矩形,推出∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,求出BN=4,求出∠EAM=∠NAB,证△EAM≌△BAN,求出EM=BN=4,根据三角形的面积公式求出即可.解答:解:过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,∵AD∥BC,∠C=90°,∴∠C=∠ADC=∠ANC=90°,∴四边形ANCD是矩形,∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,∴BN=9﹣5=4,∵∠M=∠EAB=∠MAN=∠ANB=90°,∴∠EAM+∠BAM=90°,∠MAB+∠NAB=90°,∴∠EAM=∠NAB,∵在△EAM和△BAN中,,∴△EAM≌△BAN(AAS),∴EM=BN=4,∴△ADE的面积是×AD×EM=×5×4=10.故选A.21\n点评:本题考查了矩形的性质和判定,三角形的面积,全等三角形的性质和判定,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中. 10.(4分)(2022•黄石)已知梯形ABCD的四个顶点的坐标分別为A(﹣1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为(  ) A.B.C.D.考点:一次函数综合题.专题:计算题;压轴题.分析:首先根据题目提供的点的坐标求得梯形的面积,利用直线将梯形分成相等的两部分,求得直线与梯形的边围成的三角形的面积,进而求得其解析式即可.解答:解:∵梯形ABCD的四个顶点的坐标分別为A(﹣1,0),B(5,0),C(2,2),D(0,2),∴梯形的面积为:=8,∵直线y=kx+2将梯形分成面积相等的两部分,∴直线y=kx+2与AD、AB围成的三角形的面积为4,设直线与x轴交于点(x,0),∴(x+1)×2=4,∴x=3,∴直线y=kx+2与x轴的交点为(3,0)∴0=3k+2解得k=﹣故选A.点评:本题考查了一次函数的应用,求出当直线平方梯形的面积时与x轴的交点坐标是解决本题的突破口.21\n 11.(4分)(2022•山西)如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是(  ) A.(10π﹣)米2B.(π﹣)米2C.(6π﹣)米2D.(6π﹣)米2考点:扇形面积的计算.专题:压轴题;探究型.分析:先根据半径OA长是6米,C是OA的中点可知OC=OA=3,再在Rt△OCD中,利用勾股定理求出CD的长,根据锐角三角函数的定义求出∠DOC的度数,由S阴影=S扇形AOD﹣S△DOC即可得出结论.解答:解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3=(6π﹣)平方米.故选C.点评:本题考查的是扇形的面积,根据题意求出∠DOC的度数,再由S阴影=S扇形AOD﹣S△DOC得出结论是解答此题的关键. 21\n12.(4分)(2022•德州)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有(  ) A.1组B.2组C.3组D.4组考点:相似三角形的应用;解直角三角形的应用.专题:压轴题.分析:根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据=即可解答.解答:解:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③,因为△ABD∽△EFD可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选C.点评:本题考查相似三角形的应用和解直角三角形的应用,解答道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出. 13.(4分)(2022•烟台模拟)在平面直角坐标系中,第1个正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第2个正方形A1B1C1C;延长C1B1交x轴于点A2,作第3个正方形A2B2C2C1…按这样的规律进行下去,第2022个正方形的面积为(  ) A.5B.C.D.考点:相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.专题:压轴题;规律型.分析:先根据两对对应角相等的三角形相似,证明△AOD和△A1BA相似,根据相似三角形对应边成比例可以得到AB=2A1B,所以正方形A1B1C1C的边长等于正方形ABCD边长的21\n,以此类推,后一个正方形的边长是前一个正方形的边长的,然后即可求出第2022个正方形的边长与第1个正方形的边长的关系,从而求出第2022个正方形的面积.解答:解:如图,∵四边形ABCD是正方形,∴∠ABC=∠BAD=90°,AB=BC,∴∠ABA1=90°,∠DAO+∠BAA1=90°,又∵在坐标平面内,∠DAO+∠ADO=90°,∴∠ADO=∠BAA1,在△AOD和△A1BA中,,∴△AOD∽△A1BA,∴OD:AO=AB:A1B=2,∴BC=2A1B,∴A1C=BC,以此类推A2C1=A1C,A3C2=A2C1,…,即后一个正方形的边长是前一个正方形的边长的倍,∴第2022个正方形的边长为()2022BC,∵A的坐标为(1,0),D点坐标为(0,2),∴BC=AD==,∴第2022个正方形的面积为[()2022BC]2=5()4020.故选D.点评:本题主要考查了相似三角形的性质与正方形的性质,根据规律推出第2022个正方形的边长与第1个正方形的边长的关系是解题的关键,也是难点,本题综合性较强. 二、填空题(本题共6个小题,每小题5分共18分)14.(5分)(2022•烟台模拟)如果单项式﹣3x2ay3与是同类项,则这两个单项式的积为 5x4y6 .考点:单项式乘单项式;同类项.分析:根据同类项的定义得出a,b的值,进而得出两个单项式,再利用单项式乘以单项式求出即可.解答:解:∵单项式﹣3x2ay3与是同类项,∴,解得:,∴单项式为﹣3x2y3与﹣x2y3,21\n则这两个单项式的积为:﹣3x2y3×(﹣x2y3)=5x4y6.故答案为:5x4y6.点评:此题主要考查了单项式乘以单项式以及同类项得概念,熟练根据定义得出a,b的值是解题关键. 15.(5分)(2022•烟台模拟)如图母亲节那天很多同学给妈妈准备了鲜花和礼物,从图中信息可知则买5束鲜花和5个礼盒的总价为 440  元.考点:二元一次方程组的应用.分析:设1束鲜花的价格为x元,1个礼盒的价格为y元,根据一束鲜花+2个礼盒的价格为143元和2束鲜花+1个礼盒的价格为121元建立方程组,利用整体思想求出其解即可.解答:解:设1束鲜花的价格为x元,1个礼盒的价格为y元,由题意,得,由①+②,得3x+3y=264,∴x+y=88,∴5x+5y=440.∴5束鲜花和5个礼盒的总价为440元,故答案为:440点评:本题考查了列二元一次方程组解实际问题的运用,运用数学整体思想解二元一次方程组的运用,解答时建立方程组后运用整体思想求解是难点. 16.(5分)(2022•烟台模拟)如图一小虫从P点出发绕边长为10cm的等边三角形ABC爬行一圈回到点P,在小虫爬行过程中,始终保持与三角形ABC的边的距离是2cm,求小虫爬过的路径的长是 (30+4π)cm .考点:弧长的计算.专题:计算题.分析:小虫爬过的路径分为6个部分:与等边三角形平行且等于边长的三条线段,在每个三角形顶点以顶点为圆心、2cm为半径,圆心角为120°的三条弧,然后根据弧长公式计算即可.解答:解:小虫爬过的路径的长=10+10+10+=(30+4π)cm.故答案为(30+4π)cm.点评:本题考查了弧长的计算:弧长=(n为弧所对的圆心角的度数,R为圆的半径).也考查了等边三角形的性质.21\n 17.(5分)(2022•十堰)如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为 2.5 .考点:三角形中位线定理;矩形的性质.专题:计算题;压轴题.分析:根据勾股定理求AR;再运用中位线定理求EF.解答:解:∵四边形ABCD是矩形,∴△ADR是直角三角形∵DR=3,AD=4∴AR===5∵E、F分别是PA,PR的中点∴EF=AR=×5=2.5.点评:本题属中等难度题目,涉及到矩形的性质,勾股定理的运用及三角形中位线的性质. 18.(5分)(2022•烟台模拟)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为  .考点:几何概率.分析:根据几何概率的意义,求出小圆面积与大圆面积的比即为小球落在小圆内部区域(阴影部分)的概率.解答:解:设小正方形的边长为1,则其面积为1.∵圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为,即圆的直径为,∴大正方形的边长为,则大正方形的面积为×=2,则小球停在小正方形内部(阴影)区域的概率为.故答案为:.21\n点评:此题考查了几何概率,解答此题除了熟悉几何概率的定义外,还要熟悉圆内接正方形和圆内切正方形的性质. 19.(5分)(2022•河池)如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴上,得到矩形OMNP,OM与GF相交于点A.若经过点A的反比例函数的图象交EF于点B,则点B的坐标为 (4,) .考点:反比例函数综合题.专题:压轴题.分析:根据旋转的性质得到∠P=∠POM=∠OGF=90°,再根据等角的余角相等可得∠PNO=∠GOA,然后根据相似三角形的判定方法即可得到△OGA∽△NPO;由E点坐标为(4,0),G点坐标为(0,2)得到OE=4,OG=2,则OP=OG=2,PN=GF=OE=4,由于△OGA∽△NPO,则OG:NP=GA:OP,即2:4=GA:2,可求得GA=1,可得到A点坐标为(1,2),然后利用待定系数法即可得到过点A的反比例函数解析式,再利用B点的横坐标为4和B点在y=得到B点坐标即可.解答:解:∵矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,∴∠P=∠POM=∠OGF=90°,∴∠PON+∠PNO=90°,∠GOA+∠PON=90°,∴∠PNO=∠GOA,∴△OGA∽△NPO;∵E点坐标为(4,0),G点坐标为(0,2),∴OE=4,OG=2,∴OP=OG=2,PN=GF=OE=4,∵△OGA∽△NPO,∴OG:NP=GA:OP,即2:4=GA:2,∴GA=1,∴A点坐标为(1,2),设过点A的反比例函数解析式为y=,把A(1,2)代入y=得k=1×2=2,21\n∴过点A的反比例函数解析式为y=;把x=4代入y=中得y=,∴B点坐标为(4,).故答案为:(4,).点评:本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足函数的解析式;运用待定系数法求函数的解析式;掌握旋转的性质和矩形的性质;熟练掌握相似三角形的判定与性质是解题关键. 三、解答题(本大题共8个小题,满分72分.解答题要写出必要的文字说明、证明过程或演算步骤)20.(6分)(2022•遵义)化简分式(﹣)÷,并从﹣1≤x≤3中选一个你认为合适的整数x代入求值.考点:分式的化简求值.专题:开放型.分析:先将括号内的分式通分,再按照分式的除法法则,将除法转化为乘法进行计算.解答:解:原式=[﹣]×=×=,由于当x=﹣1,x=0或x=1时,分式的分母为0,故取x的值时,不可取x=﹣1,x=0或x=1,不妨取x=2,此时原式==.点评:本题考查了分式的化简求值,解答此题不仅要熟悉分式的除法法则,还要熟悉因式分解等内容. 21.(6分)(2022•邵阳)2022年,某地开始实施农村义务教育学校营养计划﹣﹣“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.21\n(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?考点:一元一次方程的应用.专题:压轴题.分析:(1)鸡蛋中蛋白质的质量=鸡蛋的重量×鸡蛋的蛋白质含量就可以直接求出答案;(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300﹣60﹣x)克,根据题意列出方程求出其解就可以解答:解:(1)由题意得:60×15%=9(克).答:一个鸡蛋中含蛋白质的质量为9克.(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300﹣60﹣x)克,由题意得:5%x+12.5%(300﹣60﹣x)+60×15%=300×8%解得:x=200.故饼干的质量为:300﹣60﹣x=40.答:每份营养餐中牛奶和饼干的质量分别为200克和40克.点评:本题考查了列一元一次方程解实际问题的运用,根据各种食品的蛋白质的和加起来等于总蛋白质就可以建立方程,在解答时确定等量关系是关键. 22.(10分)(2022•遂宁)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是 抽样调查 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 12 件,其中B班征集到作品 3 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.专题:压轴题;图表型.分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.解答:解:(1)抽样调查,21\n所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为:抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 21\n23.(10分)(2022•德阳)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到y轴的距离判断出点C的横坐标,代入反比例函数解析式求出纵坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.解答:解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式,=y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5;(2)∵第一象限内点C到y轴的距离为3,∴点C的横坐标为3,∴y==2,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,21\n联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.点评:本题考查了反比例函数图象与一次函数图象的交点问题,根据已知条件先判断出点A的横坐标是解题的关键. 24.(10分)(2022•乌鲁木齐)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?考点:二次函数的应用.专题:应用题.分析:(1)用每台的利润乘以销售量得到每天的利润.(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.(3)把y=150代入函数,求出对应的x的值,然后根据w与x的关系,舍去不合题意的值.解答:解:(1)y=(x﹣20)(﹣2x+80),=﹣2x2+120x﹣1600;(2)∵y=﹣2x2+120x﹣1600,=﹣2(x﹣30)2+200,∴当x=30元时,最大利润y=200元;(3)由题意,y=150,即:﹣2(x﹣30)2+200=150,解得:x1=25,x2=35,又销售量W=﹣2x+80随单价x的增大而减小,所以当x=25时,既能保证销售量大,又可以每天获得150元的利润.点评:21\n本题考查的是二次函数的应用,(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.(3)由二次函数的值求出x的值. 25.(9分)(2022•湘潭)如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.考点:圆周角定理;全等三角形的性质;垂径定理;相似三角形的判定.专题:几何综合题;压轴题.分析:(1)由AB是⊙O的直径,根据直径对的圆周角是直角,即可得∠ACB=90°,又由PD⊥CD,可得∠D=∠ACB,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠A=∠P,根据有两角对应相等的三角形相似,即可判定:△PCD∽△ABC;(2)由△PCD∽△ABC,可知当PC=AB时,△PCD≌△ABC,利用相似比等于1的相似三角形全等即可求得;(3)由∠ACB=90°,AC=AB,可求得∠ABC的度数,然后利用相似,即可得∠PCD的度数,又由垂径定理,求得=,然后利用圆周角定理求得∠ACP的度数,继而求得答案.解答:(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵PD⊥CD,∴∠D=90°,∴∠D=∠ACB,∵∠A与∠P是对的圆周角,∴∠A=∠P,∴△PCD∽△ABC;(2)解:当PC是⊙O的直径时,△PCD≌△ABC,理由:∵AB,PC是⊙O的直径,∴∠PBC=∠ACB=90°,AB=PC,∵∠A=∠P∴△PCD≌△ABC;(3)解:∵∠ACB=90°,AC=AB,∴∠ABC=30°,21\n∵△PCD∽△ABC,∴∠PCD=∠ABC=30°,∵CP⊥AB,AB是⊙O的直径,∴=,∴∠ACP=∠ABC=30°,∴∠BCD=∠ACB﹣∠ACP﹣∠PCD=90°﹣30°﹣30°=30°.点评:此题考查了圆周角定理、垂径定理、相似三角形的判定与性质、全等三角形的判定与性质以及直角三角形的性质等知识.此题综合性较强,难度适中,注意数形结合思想的应用. 26.(9分)(2022•辽阳)已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.考点:正方形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题;压轴题.分析:(1)①根据等腰直角三角形的性质可得∠ABC=∠ACB=45°,再根据正方形的性质可得AD=AF,∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD和△CAF全等,根据全等三角形对应角相等可得∠ACF=∠ABD,再求出∠ACF+∠ACB=90°,从而得证;②根据全等三角形对应边相等可得BD=CF,从而求出CF=BC﹣CD;(2)与(1)同理可得BD=CF,然后结合图形可得CF=BC+CD;(3)①与(1)同理可得BD=CF,然后结合图形可得CF=CD﹣BC;②根据等腰直角三角形的性质求出∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD和△CAF全等,根据全等三角形对应角相等可得∠ACF=∠ABD,再求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=21\nDF,再根据正方形的对角线相等求出OC=OA,从而得到△AOC是等腰三角形.解答:(1)证明:①∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BD⊥CF;②由①△BAD≌△CAF可得BD=CF,∵BD=BC﹣CD,∴CF=BC﹣CD;(2)与(1)同理可得BD=CF,所以,CF=BC+CD;(3)①与(1)同理可得,BD=CF,所以,CF=CD﹣BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180°﹣45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°﹣45°=135°,∴∠FCD=∠ACF﹣∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=DF,∵在正方形ADEF中,OA=AE,AE=DF,∴OC=OA,∴△AOC是等腰三角形.21\n点评:本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,等腰三角形的判定,以及同角的余角相等的性质,此类题目通常都是用同一种思路求解,在(1)中找出证明三角形全等的思路是解题的关键. 27.(12分)(2022•襄阳)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.考点:二次函数综合题.专题:压轴题;动点型;数形结合;分类讨论.分析:(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式.(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值.(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.解答:解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)21\n∴,解得∴抛物线的解析式为:y=﹣x2+x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即=,解得t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即=,解得t=.∴当t=或时,以P、Q、C为顶点的三角形与△ADE相似.(3)假设存在符合条件的M、N点,分两种情况讨论:①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点;则:M(4,);而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则N(4,﹣);②EC为平行四边形的边,则ECMN,设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时N(4,﹣38)、M(﹣4,﹣32);21\n将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,此时N(4,﹣26)、M(12,﹣32);综上,存在符合条件的M、N点,且它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣).点评:考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解.21

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:35:31 页数:22
价格:¥3 大小:368.70 KB
文章作者:U-336598

推荐特供

MORE