首页

广东省惠州市2022年中考数学模拟试卷(解析版) 新人教版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

剩余16页未读,查看更多内容需下载

2022年广东省惠州市中考数学模拟试卷 一、选择题(共8小题,每题4分,共32分)1.(4分)(2022•厦门)若二次根式有意义,则x的取值范围是(  ) A.x>1B.x≥1C.x<1D.x≤1考点:二次根式有意义的条件.分析:根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵二次根式有意义,∴x﹣1≥0,∴x≥1.故选B.点评:本题考查的是二次根式有意义的条件,根据题意列出关于x的不等式是解答此题的关键. 2.(4分)(2022•天津)下列标志中,可以看作是中心对称图形的是(  ) A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.解答:解:根据中心对称的定义可得:A、C、D都不符合中心对称的定义.故选B.点评:本题考查中心对称的定义,属于基础题,注意掌握基本概念. 3.(4分)(2022•天津)如图是一个由4个相同的正方体组成的立体图形,它的三视图是(  ) A.B.C.D.考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.17\n解答:解:从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2,故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 4.(4分)(2022•包头)圆锥的底面直径是80cm,母线长90cm,则它的侧面展开图的圆心角是(  ) A.320°B.40°C.160°D.80°考点:圆锥的计算.专题:计算题;压轴题.分析:根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用公式求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.解答:解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故选C.点评:本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系. 5.(4分)(2022•山西)如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于(  ) A.40°B.50°C.60°D.70°考点:切线的性质;圆周角定理.专题:计算题.分析:连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.解答:解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°﹣40°=50°.17\n故选B点评:此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.熟练掌握性质及定理是解本题的关键. 6.(4分)(2022•沈阳)如图,在Rt△ABC中,∠C=90°,AB=5,AC=2,则cosA的值是(  ) A.B.C.D.考点:锐角三角函数的定义.分析:根据锐角三角函数的概念直接解答即可.解答:解:∵Rt△ABC中,∠C=90°,AB=5,AC=2,∴cosA==.故选B.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边. 7.(4分)(2022•包头)随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是(  ) A.B.C.D.考点:列表法与树状图法.分析:首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.解答:解:列表得:123456123456723456783456789456789105678910116789101112∵共有36种等可能的结果,掷得面朝上的点数之和是5的有4种情况,17\n∴掷得面朝上的点数之和是5的概率是:=.故选B.点评:此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 8.(4分)如图为二次函数y=ax2+bx+c的图象,此图象与x轴的交点坐标分别为(﹣1,0)、(3,0).下列说法正确的个数是(  )①ac<0②a+b+c>0③方程ax2+bx+c=0的根为x1=﹣1,x2=3④当x>1时,y随着x的增大而增大. A.1B.2C.3D.4考点:二次函数图象与系数的关系;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点.专题:压轴题.分析:①由抛物线的开口方向、与y轴的交点判定a、c的符号;②将x=1代入函数关系式,结合图象判定y的符号;③根据二次函数图象与x轴的交点解答;④利用对称轴和二次函数的图象的性质作出判断.解答:解:①∵该抛物线的开口方向向上,∴a>0;又∵该抛物线与y轴交于负半轴,∴c<0,∴ac<0;故本选项正确;②∵根据抛物线的图象知,该抛物线的对称轴是x==1,∴当x=1时,y<0,即a+b+c<0;故本选项错误;③∵二次函数y=ax2+bx+c的图象与x轴的交点是(﹣1,0)、(3,0),∴方程ax2+bx+c=0的根为x1=﹣1,x2=3故本选项正确;④由②知,该抛物线的对称轴是x=1,∴当x>1时,y随着x的增大而增大;故本选项正确;综上所述,以上说法正确的是①③④,共有3个;故选C.17\n点评:主要考查图象与二次函数系数之间的关系,重点是从图象中找出重要信息. 二、填空题(本大题共5小题,每小题4分,满分20分)9.(4分)(2022•宝山区一模)若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是 ﹣2 .考点:一元二次方程的解.专题:方程思想.分析:根据一元二次方程解的定义,将x=0代入关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,然后解关于m的一元二次方程即可.解答:解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,∴m=﹣2;故答案为:﹣2.点评:本题考查了一元二次方程的解的定义.解答该题时,注意一元二次方程的定义中的“一元二次方程的二次项系数不为0”这一条件. 10.(4分)(2022•乌鲁木齐)正六边形的边心距与半径的比值为  .考点:正多边形和圆.分析:设正六边形的半径与外接圆的半径相等,构建直角三角形利用勾股定理即可求出边心距.解答:解:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,因而是,则可知正六边形的边心距与半径的比值为.点评:正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形. 11.(4分)⊙O的半径为1cm,弦AB=cm,AC=cm,则∠BAC的度数为 15°或75° .考点:垂径定理;解直角三角形.专题:计算题.分析:17\n分两种情况考虑:当圆心O在弦AC与AB之间时,如图(1)所示,过O作OD⊥AB,OE⊥AC,连接OA,由垂径定理得到:D为AB中点,E为AC中点,求出AE与AD的长,在直角三角形AEO与ADO中,利用锐角三角函数定义及特殊角的三角函数值求出∠CAO与∠BAO的度数,即可求出∠BAC的度数;当圆心在弦AC与AB一侧时,如图(2)所示,同理∠BAC的度数.解答:解:当圆心O在弦AC与AB之间时,如图(1)所示,过O作OD⊥AB,OE⊥AC,连接OA,由垂径定理得到:D为AB中点,E为AC中点,∴AE=AC=cm,AD=AB=cm,∴cos∠CAO==,cos∠BAO==,∴∠CAO=30°,∠BAO=45°,此时∠BAC=30°+45°=75°;当圆心在弦AC与AB一侧时,如图(2)所示,同理得:∠BAC=45°﹣30°=15°,综上,∠BAC=15°或75°.故答案为:15°或75°.点评:此题考查了垂径定理,锐角三角函数定义,特殊角的三角函数值,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键. 12.(4分)(2022•银海区一模)抛物线y=x2﹣4x+5的对称轴是直线 x=2 .考点:二次函数的性质.专题:数形结合.分析:首先把y=x2﹣4x+5进行配方,然后就可以确定抛物线的对称轴,也可以利用公式x=﹣确定.解答:解:y=x2﹣4x+5,=x2﹣4x+4+1,=(x﹣2)2+1,∴对称轴是直线x=2.故答案为:x=2.点评:此题主要考查了二次函数的性质,解题的关键是会配方法或对称轴的公式x=﹣. 13.(4分)(2022•山西)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 4n﹣2(或2+4(n﹣1))个 .考点:规律型:图形的变化类.专题:压轴题.分析:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.17\n解答:解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n个就有阴影小三角形2+4(n﹣1)=4n﹣2个,故答案为:4n﹣2(或2+4(n﹣1))个.点评:本题是一道找规律的题目,注意由特殊到一般的分析方法,此题的规律为:第n个就有正三角形4n﹣2个.这类题型在中考中经常出现. 三、解答题(本大题共5小题,每小题7分,满分35分)14.(7分)(2022•密云县一模)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据负整数指数幂、零指数幂的意义和sin30°=得到原式=2﹣2×+1﹣3,再进行乘法运算后合并即可.解答:解:原式=2﹣2×+1﹣3=2﹣1+1﹣3=﹣1.点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行实数的加减运算.也考查了负整数指数幂、零指数幂的意义以及特殊角的三角函数值. 15.(7分)用配方法解方程:2x2﹣4x+1=0考点:解一元二次方程-配方法.专题:配方法.分析:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.解答:解:原方程化为配方得即开方得∴,.点评:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 17\n16.(7分)(2022•湛江)某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D处.用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米)(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)考点:解直角三角形的应用-仰角俯角问题.分析:由题意即可得:在Rt△ABC中,AB=BC•tan68°,又由BE=CD=1.3米,即可求得主塔AE的高度.解答:解:根据题意得:在Rt△ABC中,AB=BC•tan68°≈60×2.48=148.8(米),∵CD=1.3米,∴BE=1.3米,∴AE=AB+BE=148.8+1.3=150.1(米).∴主塔AE的高度为150.1米.点评:本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用. 17.(7分)(2022•青海)已知,如图所示,图①和图②中的每个小正方形的边长都为1个单位长度.(1)将图①中的格点△ABC(顶点都在网络线交点处的三角形叫做格点三角形)向上平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图②中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.考点:作图—相似变换;作图-平移变换.专题:作图题;网格型.分析:(1)各顶点均向上平移2个单位长度得到△A1B1C1;(2)要放大2倍,首先就要找一个最长边AC,画AC的2倍的线段,然后再找第三个点.解答:解:17\n点评:解答此题的关键是掌握平移位似的性质. 18.(7分)(2022•聊城)将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)求证:△BCE≌△B′CF;(2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.考点:旋转的性质;全等三角形的判定与性质.专题:压轴题.分析:(1)根据题意可知∠B=∠B′,BC=B′C,∠BCE=∠B′CF,利用ASA即可证出△BCE≌△B′CF;(2)由旋转角等于30°得出∠ECF=30°,所以∠FCB′=60°,根据四边形的内角和可知∠BOB′的度数为360°﹣60°﹣60°﹣150°,最后计算出∠BOB′的度数即可.解答:(1)证明:∵∠B=∠B′,BC=B′C,∠BCE=∠B′CF,∴△BCE≌△B′CF;(2)解:AB与A′B′垂直,理由如下:旋转角等于30°,即∠ECF=30°,所以∠FCB′=60°,又∠B=∠B′=60°,根据四边形的内角和可知∠BOB′的度数为360°﹣60°﹣60°﹣150°=90°,所以AB与A′B′垂直.点评:此题考查了旋转的性质,解题时要根据旋转的性质求出角的度数,要与全等三角形的判定和四边形的内角和定理相结合是解题的关键. 四、解答题(本大题共3小题,每小题9分,满分27分)19.(9分)(2022•呼伦贝尔)在一个口袋中有4个完全相同的小球,把它们分别标号为1,3,5,7,随机摸出一个小球然后放回,再随机摸出一个小球,求下列事件的概率:(1)两次取出的小球标号相同;17\n(2)两次取出的小球的标号和是5的倍数.考点:列表法与树状图法.专题:压轴题.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球标号相同的情况,再利用概率公式求解即可求得答案;(2)由(1)即可求得两次取出的小球的标号和是5的倍数的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:∵共有16种等可能的结果,两次取出的小球标号相同的有4种情况,∴两次取出的小球标号相同的概率为:=;(2)∵两次取出的小球的标号和是5的倍数的有3种情况,∴两次取出的小球的标号和是5的倍数的概率为:.点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 20.(9分)(2022•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.考点:一元二次方程的应用.专题:增长率问题;压轴题.分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.解答:解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,17\n∴小华选择方案一购买更优惠.点评:本题考查了一元二次方程的应用,在解决有关增长率的问题时,注意其固定的等量关系. 21.(9分)(2022•延庆县一模)已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sinC=时,求⊙O的半径.考点:切线的判定与性质;等腰三角形的性质;解直角三角形.专题:几何综合题;压轴题.分析:(1)连接OE,根据等腰三角形性质求出BD⊥AC,推出∠ABE=∠DBE和∠OBE=∠OEB,得出∠OEB=∠DBE,推出OE∥BD,得出OE⊥AC,根据切线的判定定理推出即可;(2)根据sinC=求出AB=BC=10,设⊙O的半径为r,则AO=10﹣r,得出sinA=sinC=,根据OE⊥AC,得出sinA===,即可求出半径.解答:(1)证明:连接OE,∵AB=BC且D是AC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠ABE=∠DBE,∵OB=OE∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∵BD⊥AC,∴OE⊥AC,∵OE为⊙O半径,∴AC与⊙O相切.(2)解:∵BD=6,sinC=,BD⊥AC,∴BC=10,∴AB=BC=10,设⊙O的半径为r,则AO=10﹣r,∵AB=BC,∴∠C=∠A,∴sinA=sinC=,17\n∵AC与⊙O相切于点E,∴OE⊥AC,∴sinA===,∴r=,答:⊙O的半径是…点评:本题考查了平行线的性质和判定,等腰三角形的性质和判定,解直角三角形,切线的性质和判定的应用,解(1)小题的关键是求出OE∥BD,解(2)小题的关键是得出关于r的方程,题型较好,难度适中,用了方程思想. 五、解答题(本大题共3小题,每小题12分,满分36分)22.(12分)(2022•徐汇区一模)“数学迷”小楠通过从“特殊到一般”的过程,对倍角三角形(一个内角是另一个内角的2倍的三角形)进行研究.得出结论:如图1,在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,如果∠A=2∠B,那么a2﹣b2=bc.下面给出小楠对其中一种特殊情形的一种证明方法.已知:如图2,在△ABC中,∠A=90°,∠B=45°.求证:a2﹣b2=bc.证明:如图2,延长CA到D,使得AD=AB.∴∠D=∠ABD,∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°∴∠D=45°,∵∠ABC=45°,∴∠D=∠ABC,又∠C=∠C∴△ABC∽△BCD∴,即∴a2﹣b2=bc根据上述材料提供的信息,请你完成下列情形的证明(用不同于材料中的方法也可以):已知:如图1,在△ABC中,∠A=2∠B.求证:a2﹣b2=bc.17\n考点:相似三角形的判定与性质.分析:首先延长CA到D,使得AD=AB,得出∠D=∠ABC,进而得出△ABC∽△BDC,进而利用相似三角形的性质得出答案.解答:证明:延长CA到D,使得AD=AB,连接BD.∴∠D=∠ABD,∵∠CAB=∠D+∠ABD=2∠D,∵∠CAB=2∠ABC,∴∠D=∠ABC,又∠C=∠C,∴△ABC∽△BDC,∴,即,∴a2﹣b2=bc.点评:此题主要考查了相似三角形的判定与性质,正确作出辅助线得出△ABC∽△BDC是解题关键. 23.(12分)(2022•天津)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.17\n(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m=,即可求得t的值.解答:解:(Ⅰ)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(,6).(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴.∴m=(0<t<11).(Ⅲ)过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴,∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,∴AC′==,17\n∴,∴,∴3(6﹣m)2=(3﹣m)(11﹣t)2,∵m=,∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2,∴t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2,∴t2=﹣t2+t﹣3,∴3t2﹣22t+36=0,解得:t1=,t2=,点P的坐标为(,6)或(,6).法二:∵∠BPO=∠OPC′=∠POC′,∴OC′=PC′=PC=11﹣t,过点P作PE⊥OA于点E,则PE=BO=6,OE=BP=t,∴EC′=11﹣2t,在Rt△PEC′中,PE2+EC′2=PC′2,即(11﹣t)2=62+(11﹣2t)2,解得:t1=,t2=.点P的坐标为(,6)或(,6).点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用. 24.(12分)(2022•宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;17\n②若⊙M的半径为,求点M的坐标.考点:二次函数综合题.专题:代数几何综合题;压轴题;分类讨论.分析:(1)根据与x轴的两个交点A、B的坐标,设出二次函数交点式解析式y=a(x+1)(x﹣2),然后把点C的坐标代入计算求出a的值,即可得到二次函数解析式;(2)设OP=x,然后表示出PC、PA的长度,在Rt△POC中,利用勾股定理列式,然后解方程即可;(3)①根据相似三角形对应角相等可得∠MCH=∠CAO,然后分(i)点H在点C下方时,利用同位角相等,两直线平行判定CM∥x轴,从而得到点M的纵坐标与点C的纵坐标相同,是﹣2,代入抛物线解析式计算即可;(ii)点H在点C上方时,根据(2)的结论,点M为直线PC与抛物线的另一交点,求出直线PC的解析式,与抛物线的解析式联立求解即可得到点M的坐标;②在x轴上取一点D,过点D作DE⊥AC于点E,可以证明△AED和△AOC相似,根据相似三角形对应边成比例列式求解即可得到AD的长度,然后分点D在点A的左边与右边两种情况求出OD的长度,从而得到点D的坐标,再作直线DM∥AC,然后求出直线DM的解析式,与抛物线解析式联立求解即可得到点M的坐标.解答:解:(1)设该二次函数的解析式为:y=a(x+1)(x﹣2),将x=0,y=﹣2代入,得﹣2=a(0+1)(0﹣2),解得a=1,∴抛物线的解析式为y=(x+1)(x﹣2),即y=x2﹣x﹣2;(2)设OP=x,则PC=PA=x+1,在Rt△POC中,由勾股定理,得x2+22=(x+1)2,解得,x=,即OP=;(3)①∵△CHM∽△AOC,∴∠MCH=∠CAO,(i)如图1,当H在点C下方时,∵∠MCH=∠CAO,∴CM∥x轴,∴yM=﹣2,∴x2﹣x﹣2=﹣2,解得x1=0(舍去),x2=1,∴M(1,﹣2),(ii)如图1,当H在点C上方时,∵∠MCH=∠CAO,∴PA=PC,由(2)得,M′为直线CP与抛物线的另一交点,17\n设直线CM的解析式为y=kx﹣2,把P(,0)的坐标代入,得k﹣2=0,解得k=,∴y=x﹣2,由x﹣2=x2﹣x﹣2,解得x1=0(舍去),x2=,此时y=×﹣2=,∴M′(,),②在x轴上取一点D,如图(备用图),过点D作DE⊥AC于点E,使DE=,在Rt△AOC中,AC===,∵∠COA=∠DEA=90°,∠OAC=∠EAD,∴△AED∽△AOC,∴=,即=,解得AD=2,∴D(1,0)或D(﹣3,0).过点D作DM∥AC,交抛物线于M,如图(备用图)则直线DM的解析式为:y=﹣2x+2或y=﹣2x﹣6,当﹣2x﹣6=x2﹣x﹣2时,即x2+x+4=0,方程无实数根,当﹣2x+2=x2﹣x﹣2时,即x2+x﹣4=0,解得x1=,x2=,∴点M的坐标为(,3+)或(,3﹣).17\n点评:本题是对二次函数的综合考查,主要利用了待定系数法求二次函数解析式,勾股定理,相似三角形的性质,两函数图象交点的求解方法,综合性较强,难度较大,要注意分情况讨论求解. 17

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:32:30 页数:18
价格:¥3 大小:287.41 KB
文章作者:U-336598

推荐特供

MORE