专题二 规律探索与猜想一、选择题1.(2022长沙中考)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( C )A.24里B.12里C.6里D.3里2.(2022重庆中考B卷)下列图像都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( B )A.116B.144C.145D.1503.(2022自贡中考)填在下面各正方形中四个数之间都有相同的规律,根据这种规律可求出m的值为( C )A.180B.182C.184D.1864.(2022武汉中考)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( D )A.4B.5C.6D.75.(2022西宁中考)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自D点出发沿折线DC—CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(s),则下列图像中能大致反映y与x之间的函数关系的是( A )7\n,A),B),C),D)6.(2022湖州中考)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图①),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图②),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是( B )A.13B.14C.15D.167.(2022连云港中考)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;……按此规律运动到点A2017处,则点A2017与点A0间的距离是( A )A.4B.2C.2D.08.(2022宁波中考)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是( A )A.3B.4C.5D.6二、填空题9.(2022宁波中考)如图,用同样大小的黑色棋子按如图所示的规律摆放:7\n则第⑦个图案有__19__个黑色棋子.10.(2022滨州中考)观察下列各式:=-;=-;=-;……请利用你所得结论,化简代数式:+++…+(n≥3且为整数),其结果为____.11.(2022安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn-1Bn顶点Bn的横坐标为__2n+1-2__.12.(2022衢州中考)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限.△ABO沿x轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是__(5,)__;翻滚2017次后AB中点M经过的路径长为__π__,.)三、解答题13.(2022郴州中考)如图①,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.图①(1)求证:△CDE是等边三角形;(2)如图②,当6<t<10时,△BDE周长是否在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由.7\n图②(3)如图③,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.图③解:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠CDA=∠CEB,∠CDE=∠CDA+∠BDE=60°,则∠BDE+∠CEB=60°,又∠EDB+∠DEC+∠CEB+∠DBE=180°,∴∠DBE=180°-60°-60°=60°,即∠ABE=60°,∠BDE=60°,∴∠DEB可能为直角,由(1)可知,△CDE是等边三角形,∠DBE=60°,∴∠CEB=30°,则∠BED=90°.∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°.∴DA=CA=4,∴OD=OA-DA=6-4=2,∴t=2÷1=2s;7\n③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述,当t=2或14s时,以D,E,B为顶点的三角形是直角三角形.14.(2022临沂中考)数学课上,张老师出示了问题:如图①,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BD,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图②,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图③,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图④,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图⑤,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其他条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.解:(1)BC+CD=AC.理由:如答图①,7\n延长CD至E,使DE=BC,连接AE.∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°-∠ABD-∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=90°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC·cosα.理由:答如图②,延长CD至E,使DE=BC,连接AE,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°-∠ABD-∠ADB=180°-2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,7\n∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC·cos∠ACD=AC·cosα,∴CE=2CF=2AC·cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC·cosα.7