浙江省2022年中考数学复习题方法技巧专题七角平分线训练新版浙教版
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
方法技巧专题(七) 角平分线训练【方法解读】1.与角平分线有关的判定和性质:(1)角平分线的判定和性质.(2)角平分线的夹角:①三角形两内角的平分线的夹角等于90°与第三角一半的和;②三角形两外角的平分线的夹角等于90°与第三角一半的差;③三角形一内角与另一外角的平分线的夹角等于第三角的一半.(3)三角形的内心及其性质.(4)圆中弧、圆心角、圆周角之间的关系.2.与角平分线有关的图形或辅助线:(1)角平分线“加”平行线构成等腰三角形.(2)角平分线“加”垂线构成等腰三角形.(3)过角平分线上的点作边的垂线.1.[2022·黑龙江]如图F7-1,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB的度数是( )图F7-1A.30°B.35°C.45°D.60°2.[2022·陕西]如图F7-2,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为( )12\n图F7-2A.432B.22C.832D.323.[2022·达州]如图F7-3,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M.若BC=7,则MN的长为( )图F7-3A.32B.2C.52D.34.如图F7-4,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD,AC于点E,F,则BFEF的值是( )图F7-4A.2-1B.2+2C.2+1D.25.[2022·滨州]如图F7-5,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M,N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON12\n的面积不变;(4)MN的长不变.其中正确的个数为( )图F7-5A.4B.3C.2D.16.[2022·宁夏]如图F7-6,在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于 . 图F7-67.[2022·十堰]如图F7-7,△ABC内接于☉O,∠ACB=90°,∠ACB的平分线交☉O于点D,若AC=6,BD=52,则BC的长为 . 图F7-78.如图F7-8,在矩形ABCD中,∠ABC的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号) 图F7-812\n9.如图F7-9,已知☉O的直径AB=5,AC,AE为弦,且AC=4,AC平分∠BAE,求AE的长.图F7-910.[2022·盐城]如图F7-10,矩形ABCD中,∠ABD,∠CDB的平分线BE,DF分别交边AD,BC于点E,F.(1)求证:四边形BEDF为平行四边形.(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.12\n图F7-1011.[2022·临沂]如图F7-11,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.图F7-1112.如图F7-12,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连结ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=210,点H是BD上的一个动点,求HG+HC的最小值.12\n图F7-1212\n参考答案1.B 2.C [解析]∵BE平分∠ABD,∠ABC=60°,∴∠ABE=∠EBD=30°.∵AD⊥BC,∴∠BDA=90°.∴DE=12BE.∵∠BAD=90°-60°=30°,∴∠BAD=∠ABE=30°,∴AE=BE=2DE,∴AE=23AD.在Rt△ACD中,sinC=ADAC,∴AD=ACsinC=8×22=42,∴AE=23×42=832.故选C.3.C [解析]∵△ABC的周长为19,BC=7,∴AB+AC=12.∵∠ABC的平分线垂直于AE,垂足为N,∴BA=BE,N是AE的中点.∵∠ACB的平分线垂直于AD,垂足为M,∴AC=DC,M是AD的中点,∴DE=AB+AC-BC=5.∵MN是△ADE的中位线,∴MN=12DE=52.故选C.4.C [解析]如图,过点F作FG⊥AD于点G.依题意可知△ABC是等腰直角三角形,12\n∴△AFG也是等腰直角三角形.设FG=1,则AG=1,AF=2.∵BE平分∠ABC,∴∠ABE=22.5°.∴∠AEB=90°-∠ABE=67.5°,∠AFE=∠CAB+∠ABE=67.5°.∴∠AEB=∠AFE,∴AE=AF=2,∴EG=2-1.∵FG⊥AD,∠DAB=90°,∴FG∥AB.∴BFEF=AGEG=12-1=2+1.故选C.5.B [解析]结论(1),如图,过点P分别作OA,OB的垂线段,由于∠PEO=∠PFO=90°,因此∠AOB与∠EPF互补,由已知“∠MPN与∠AOB互补”,可得∠MPN=∠EPF,可得∠MPE=∠NPF.根据“角平分线上一点到角两边距离相等”,可证PE=PF,即可证得Rt△PME≌Rt△PNF,因此对于结论(1),“PM=PN”由全等即可证得是成立的;结论(2),也可以由全等得到ME=NF,即可证得OM+ON=OE+OF,由于OE+OF保持不变,因此OM+ON的值也保持不变;结论(3),由“Rt△PME≌Rt△PNF”可得这两个三角形的面积相等,因此四边形PMON的面积与四边形PEOF的面积始终相等,因此结论(3)是正确的;结论(4),如图,连结EF,对于△PMN与△PEF,这两个三角形都是等腰三角形,且顶角相等,但由于腰长不等,因此这两个三角形不可能全等,所以底边MN与EF不可能相等.所以MN的长是变化的.故选B.6.212\n7.8 [解析]连结DA,因为∠ACB=90°,所以AB为☉O的直径,所以∠ADB=90°.因为CD平分∠ACB,所以BD=AD.在△ABD中,AB=AD2+BD2=(52)2+(52)2=10.在△ABC中,BC=AB2-AC2=102-62=8.8.62+3 [解析]如图,延长EF和BC,交于点G.矩形ABCD中,∠ABC的平分线BE与AD交于点E,所以∠ABE=∠GBE=45°,所以在Rt△ABE中,∠ABE=∠AEB=45°,所以AB=AE=9.在Rt△ABE中,根据勾股定理,得BE=AB2+AE2=92+92=92.又因为∠BED的平分线EF与DC相交于点F,所以∠BEG=∠DEF.因为AD∥BC,所以∠G=∠DEF,所以∠BEG=∠G,所以BG=BE=92.由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC,所以CGDE=CFDF=CF2CF=12.设CG=x,DE=2x,则AD=9+2x=BC.因为BG=BC+CG,所以92=9+2x+x,解得x=32-3,所以BC=9+2x=9+2(32-3)=62+3.9.解:如图,连结BC,BE,OC,OC交BE于点G.因为∠BAE=2∠BAC=∠BOC,且∠BAE+∠ABE=90°,所以∠OGB=90°,即OC⊥BE,所以BG=EG,AE=2OG.设OG=x,则CG=52-x,BC=3,由勾股定理可得OB2-OG2=BC2-CG2,即254-x2=9-52-x2,解得x=710,故AE=2x=75.10.解:(1)证明:∵四边形ABCD是矩形,∴AB∥CD,BC∥AD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠EBD=12∠ABD,∠FDB=12∠CDB.∴∠EBD=∠FDB.∴BE∥DF.又∵BC∥AD,∴四边形BEDF是平行四边形.(2)当∠ABE=30°时,四边形BEDF是菱形.12\n理由如下:∵BE平分∠ABD,∠ABE=30°,∴∠ABD=60°,∠DBE=30°.∵四边形ABCD是矩形,∴∠A=90°,∴∠ADB=90°-∠ABD=90°-60°=30°.∴∠DBE=∠ADB,∴DE=BE.∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.11.解:(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵BE平分∠ABC,∴∠CBE=∠ABE,∴∠DBE=∠CBE+∠CBD=∠ABE+∠BAD.又∵∠BED=∠ABE+∠BAD,∴∠DBE=∠BED,∴DE=BD.(2)如图,连结CD.∵∠BAC=90°,∴BC是直径,∴∠BDC=90°.∵AD平分∠BAC,BD=4,∴BD=CD=4,12\n∴BC=BD2+CD2=42,∴△ABC外接圆的半径为22.12.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB.∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EDF=∠GBF.在△EFD和△GFB中,∠EDF=∠GBF,DF=BF,∠EFD=∠GFB,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)如图,分别过点E,D作EM⊥BC于点M,DN⊥BC于点N,连结EC交BD于点H,此时HG+HC最小,在Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=210,∴EM=12BE=10.∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=10,MN=DE=210.在Rt△DNC中,∵∠DNC=90°,∠DCN=45°,12\n∴∠NDC=∠NCD=45°,∴DN=NC=10,∴MC=310.在Rt△EMC中,∵∠EMC=90°,EM=10,MC=310,∴EC=EM 2+MC 2=(10)2+(310)2=10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.12
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)