浙江省2022年中考数学复习题方法技巧专题六中点联想训练新版浙教版
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
方法技巧专题(六) 中点联想训练【方法解读】1.与中点有关的定理:(1)直角三角形斜边上的中线等于斜边的一半.(2)等腰三角形“三线合一”的性质.(3)三角形的中位线定理.(4)垂径定理及其推论.2.与中点有关的辅助线:(1)构造三角形的中位线,如连结三角形两边的中点;取一边的中点,然后与另一边的中点相连结;过三角形一边的中点作另一边的平行线等等.(2)延长角平分线的垂线,构造等腰三角形,利用等腰三角形的“三线合一”.(3)把三角形的中线延长一倍,构造平行四边形.1.[2022·南充]如图F6-1,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为( )图F6-1A.12B.1C.32D.32.[2022·株洲]如图F6-2,点E,F,G,H分别为四边形ABCD四条边AB,BC,CD,DA的中点,则下列关于四边形EFGH的说法正确的是( )14\n图F6-2A.一定不是平行四边形B.一定不会是中心对称图形C.可能是轴对称图形D.当AC=BD时,它为矩形3.[2022·荆门]如图F6-3,等腰直角三角形ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为( )图F6-3A.24πB.22πC.1D.24.如图F6-4,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )图F6-4A.2.5B.5C.322D.25.[2022·眉山]如图F6-5,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF.其中正确的结论有( )14\n图F6-5A.1个B.2个C.3个D.4个6.[2022·苏州]如图F6-6,在△ABC中,延长BC至点D,使得CD=12BC.过AC的中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连结DF,若AB=8,则DF的长为 . 图F6-67.[2022·天津]如图F6-7,在边长为4的等边三角形ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连结DG,则DG的长为 . 图F6-78.[2022·哈尔滨]如图F6-8,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连结EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=10,则线段BC的长为 . 图F6-89.[2022·德阳]如图F6-9,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tanB=34,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC,BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是 (填写正确结论的序号). 14\n图F6-910.[2022·徐州]如图F6-10,在平行四边形ABCD中,点O是边BC的中点,连结DO并延长,交AB的延长线于点E.连结BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD= °时,四边形BECD是矩形. 图F6-1011.[2022·成都]如图F6-11,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连结DE交线段OA于点F.(1)求证:DH是☉O的切线;(2)若A为EH的中点,求EFFD的值;(3)若EA=EF=1,求☉O的半径.14\n图F6-1112.[2022·淄博](1)操作发现:如图F6-12①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连结GM,GN,小明发现:线段GM与GN的数量关系是 ;位置关系是 . (2)类比思考:如图②,小明在此基础上进行了深入思考,把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现上述的结论还成立吗?请说明理由.(3)深入探究:如图③,小明在(2)的基础上,又作了进一步的探究,向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.图F6-1214\n14\n参考答案1.B [解析]在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,∴AB=4,CD=12AB,∴CD=12×4=2.∵E,F分别为AC,AD的中点,∴EF=12CD=12×2=1.故选B.2.C 3.C [解析]如图,连结OM,CM,OC.∵OQ⊥OP,且M是PQ的中点,∴OM=12PQ.∵△ABC是等腰直角三角形,∴∠ACB=90°,∴CM=12PQ,∴OM=CM,∴△OCM是等腰三角形,∴M在OC的垂直平分线上.∵当点P在A点时,点M为AC的中点,当点P在C点时,点M为BC的中点,∴点M所经过的路线长为12AB=1.故选C.4.B5.D [解析]如图①,连结AF并延长与BC的延长线相交于点M,易证△ADF≌△MCF,∴AF=MF,AD=MC.又∵AD=BC,DC=AB=2AD,∴AB=BM,∴∠ABC=2∠ABF,故①正确.如图②,延长EF,BC相交于点G.易得△DEF≌△CGF,∴FE=FG.∵BE⊥AD,AD∥BC,∴∠EBG=90°.根据直角三角形斜边上的中线等于斜边的一半,得EF=BF,故②正确.如图②,由于BF是△BEG的中线,∴S△BEG=2S△BEF,而S△BEG=S四边形DEBC,∴S四边形DEBC=2S△EFB,故③正确.如图②,设∠DEF=x,∵AD∥BC,∴∠DEF=∠G=x,14\n又∵FG=FB,∴∠G=∠FBG=x,∴∠EFB=2x.∵CD=2AD,F为CD的中点,BC=AD,∴CF=CB,∴∠CFB=∠CBF=x,∴∠CFE=∠CFB+∠BFE=x+2x=3x=3∠DEF,故④正确.故选D.6.4 [解析]解此题时可取AB的中点,然后再利用三角形的中位线和平行四边形的判定和性质.取AB的中点M,连结ME,则ME∥BC,ME=12BC.∵EF∥CD,∴M,E,F三点共线,∵EF=2CD,CD=12BC,∴MF=BD,∴四边形MBDF是平行四边形,∴DF=BM=12AB=12×8=4.7.192 [解析]如图,连结DE.∵D,E分别为AB,BC的中点,∴DE∥AC,DE=12AC=2,EC=2.∵EF⊥AC,∴DE⊥EF,14\n∴△DEG为直角三角形.在Rt△EFC中,EC=2,∠C=60°,∴EF=3.∵G为EF的中点,∴EG=32.在Rt△DEG中,DE=2,EG=32,由勾股定理,得DG=DE2+EG2=192.故答案为192.8.42 [解析]如图,连结BE,由E,F分别为OA,OD的中点可知EF=12AD,EF∥AD,易证△BEC是等腰直角三角形,EM三线合一,可证得△EFN≌△MBN,可得到BN=FN=10,tan∠NBM=12,就能求出BM=22,所以BC=42.9.①③④ [解析]由题意得,AE=DE,AD=BD=CD.∵△ACD是正三角形,∴∠CDA=60°,CE⊥AD,∴∠B=∠DCB=30°.在Rt△BCE中,∠B=30°,∴CB=2CE,故①正确;∵∠B=30°,∴tanB=33,故②错误;在正△ACD中,CE是△ACD的中线,∴∠ECD=12∠ACD=30°,∴∠ECD=∠DCB,故③正确;如题图,PM=d1,PN=d2.在Rt△MPN中,d12+d22=MN2.∵∠ACB=∠CMP=∠CNP=90°,∴四边形MPNC为矩形,∴MN=CP.要使d12+d22最小,只需MN最小,即PC最小,当CP⊥AB时,即P与E重合时,d12+d22最小.在Rt△ACE中,∵AC=2,∠ACE=30°,14\n∴CE=AC·cos30°=3,则CE2=3,∴d12+d22的最小值为3,故④正确.故正确的有①③④.10.解:(1)证明:∵平行四边形ABCD,∴AE∥DC,∴∠EBO=∠DCO,∠BEO=∠CDO.∵点O是边BC的中点,∴BO=CO,∴△EBO≌△DCO(AAS),∴EO=DO,∴四边形BECD是平行四边形.(2)100° 提示:若四边形BECD为矩形,则BC=DE,BD⊥AE,又AD=BC,∴AD=DE.∵∠A=50°,根据等腰三角形的性质,可知∠ADB=∠EDB=40°,∴∠BOD=180°-∠ADE=100°.11.解:(1)证明:连结OD,如图.∵OB=OD,∴∠OBD=∠ODB.又∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DH⊥AC,∴DH⊥OD,∴DH是☉O的切线.(2)∵∠E=∠B,∠B=∠C,∴∠E=∠C,∴△EDC是等腰三角形.14\n又∵DH⊥AC,点A是EH中点,∴设AE=x,则EC=4x,AC=3x.连结AD,∵AB为☉O的直径,∴∠ADB=90°,即AD⊥BD.又∵△ABC是等腰三角形,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=12AC=32x,∴∠E=∠ODF.在△AEF和△ODF中,∠E=∠ODF,∠AFE=∠OFD,∴△AEF∽△ODF,∴EFFD=AEOD,∵AEOD=x32x=23,∴EFFD=23.(3)设☉O的半径为r,即OD=OB=r.∵EF=EA,∴∠EFA=∠EAF.又∵OD∥EC,∴∠FOD=∠EAF,∴∠FOD=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1.∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD=1+r,∴AF=AB-BF=2OB-BF=2r-(1+r)=r-1.在△BFD与△EFA中,∠BFD=∠EFA,∠B=∠E,14\n∴△BFD∽△EFA,∴EFFA=BFDF,∴1r-1=r+1r,解得r1=1+52,r2=1-52(舍去).∴☉O的半径为1+52.12.[解析](1)通过观察可得两条线段的关系是垂直且相等;(2)连结BE,CD,可得△ACD≌△AEB,从而得DC⊥BE,DC=BE,利用中位线得GM∥CD且等于CD的一半,GN∥BE且等于BE的一半,从而得到MG和GN的关系;(3)连结BE,CD,仿照(2)依然可得相同的结论.解:(1)操作发现:线段GM与GN的数量关系为GM=GN;位置关系为GM⊥GN.(2)类比思考:上述结论仍然成立.理由如下:如图①,连结CD,BE相交于点O,BE交AC于点F.①∵点M,G分别是BD,BC的中点,∴MG∥CD,MG=12CD.同理可得NG∥BE,NG=12BE.∵∠DAB=∠EAC,∴∠DAC=∠BAE.又∵AD=AB,AC=AE,∴△ADC≌△ABE,∴∠AEB=∠ACD,DC=BE,∴GM=GN.14\n∵∠AEB+∠AFE=90°,∴∠OFC+∠ACD=90°,∴∠FOC=90°,易得∠MGN=90°,∴GM⊥GN.(3)深入探究:△GMN是等腰直角三角形.证明如下:如图②,连结BE,CD,CE与GM相交于点H.②∵点M,G分别是BD,BC的中点,∴MG∥CD,MG=12CD.同理NG∥BE,NG=12BE.∵∠DAB=∠EAC,∴∠DAC=∠BAE.又∵AD=AB,AC=AE,∴△ADC≌△ABE,∴∠AEB=∠ACD,DC=BE,∴GM=GN.∵GM∥CD,∴∠MHC+∠HCD=180°,∴∠MHC+(45°+∠ACD)=180°,∴∠MHC+45°+∠AEB=180°,∴∠MHC+45°+(45°+∠CEB)=180°,14\n∴∠MHC+∠CEB=90°,∴∠GNH+∠GHN=90°,∴∠NGM=90°,即GM⊥GN,∴△GNM是等腰直角三角形.14
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)