首页

2019年浙江省台州市中考数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/24

2/24

剩余22页未读,查看更多内容需下载

2019年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是(  )A.﹣1B.1C.﹣aD.a2.(4分)如图是某几何体的三视图,则该几何体是(  )A.长方体B.正方体C.圆柱D.球3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为(  )A.5.952×1011B.59.52×1010C.5.952×1012D.5952×1094.(4分)下列长度的三条线段,能组成三角形的是(  )A.3,4,8B.5,6,10C.5,5,11D.5,6,115.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2=1n[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2],其中“5”是这组数据的(  )A.最小值B.平均数C.中位数D.众数6.(4分)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是(  )A.x4+y3=4260B.x5+y4=4260C.x4+y5=4260D.x3+y4=42607.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为(  )\nA.23B.3C.4D.4−38.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于(  )A.14B.12C.817D.8159.(4分)已知某函数的图象C与函数y=3x的图象关于直线y=2对称.下列命题:①图象C与函数y=3x的图象交于点(32,2);②点(12,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是(  )A.①②B.①③④C.②③④D.①②③④10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为(  )\nA.2:1B.3:2C.3:1D.2:2二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2=  .12.(5分)若一个数的平方等于5,则这个数等于  .13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是  .14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为  .15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共  个.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn=23,则m+n的最大值为  .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:12+|1−3|﹣(﹣1).18.(8分)先化简,再求值:3xx2−2x+1−3x2−2x+1,其中x=12.\n19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.\n(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(  )②若AD=BE=CF,则六边形ABCDEF是正六边形.(  )23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;\n(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求AFAP的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.\n2019年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是(  )A.﹣1B.1C.﹣aD.a【解答】解:2a﹣3a=﹣a,故选:C.2.(4分)如图是某几何体的三视图,则该几何体是(  )A.长方体B.正方体C.圆柱D.球【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为(  )A.5.952×1011B.59.52×1010C.5.952×1012D.5952×109【解答】解:数字595200000000科学记数法可表示为5.952×1011元.故选:A.4.(4分)下列长度的三条线段,能组成三角形的是(  )A.3,4,8B.5,6,10C.5,5,11D.5,6,11【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形\nD选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2=1n[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2],其中“5”是这组数据的(  )A.最小值B.平均数C.中位数D.众数【解答】解:方差s2=1n[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2]中“5”是这组数据的平均数,故选:B.6.(4分)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是(  )A.x4+y3=4260B.x5+y4=4260C.x4+y5=4260D.x3+y4=4260【解答】解:设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是:x5+y4=4260.故选:B.7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为(  )\nA.23B.3C.4D.4−3【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=12∠BAC=30°,∴∠AOC=90°,∴OC=12AC=4,∵OE⊥AC,∴OE=32OC=23,∴⊙O的半径为23,故选:A.8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于(  )A.14B.12C.817D.815【解答】解:如图,\n∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=CDMD∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=174∴CM=154∴tanα=tan∠DMC=CDMC=815故选:D.9.(4分)已知某函数的图象C与函数y=3x的图象关于直线y=2对称.下列命题:①图象C与函数y=3x的图象交于点(32,2);②点(12,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是(  )A.①②B.①③④C.②③④D.①②③④【解答】解:∵函数y=3x的图象在第一、三象限,则关于直线y=2对称,点(32,2)是图象C与函数y=3x的图象交于点;\n∴①正确;点(12,﹣2)关于y=2对称的点为点(12,6),∵(12,6)在函数y=3x上,∴点(12,﹣2)在图象C上;∴②正确;∵y=3x中y≠0,x≠0,取y=3x上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4−3x;∴③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=3x上,∴4﹣y1=3x1,4﹣y2=3x2,∵x1>x2>0或0>x1>x2,∴4﹣y1<4﹣y2,∴y1>y2;∴④不正确;故选:A.10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为(  )A.2:1B.3:2C.3:1D.2:2【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.\n由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=2DK,∴S△DFNS△DNK=FNNK=DFDK=2(角平分线的性质定理,可以用面积法证明),∴SA型SB型=2S△DFN2S△DNK=2,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为2:1,故选:A.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2= a(x+y)(x﹣y) .【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).12.(5分)若一个数的平方等于5,则这个数等于 ±5 .【解答】解:若一个数的平方等于5,则这个数等于:±5.故答案为:±5.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是 49 .【解答】解:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为49;故答案为:49.\n14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为 52° .【解答】解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 3 个.【解答】解:∵210÷3=70,∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3,…,140;∵140÷3=46…2,∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3,…,94;∵94÷3=31…1,∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,∵63<66,\n∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个.故答案为:3.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn=23,则m+n的最大值为 253 .【解答】解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴AEBF=BECF,即xn=my,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴ANCM=DNDM,即mn=4−xy−4=23,∴y=−32x+10,∵mn=23,∴n=32m,\n∴(m+n)最大=52m,∴当m最大时,(m+n)最大=52m,∵mn=xy=x(−32x+10)=−32x2+10x=32m2,∴当x=−102×(−32)=103时,mn最大=503=32m2,∴m最大=103,∴m+n的最大值为52×103=253.故答案为:253.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:12+|1−3|﹣(﹣1).【解答】解:原式=23+3−1+1=33.18.(8分)先化简,再求值:3xx2−2x+1−3x2−2x+1,其中x=12.【解答】解:3xx2−2x+1−3x2−2x+1=3(x−1)(x−1)2=3x−1,当x=12时,原式=312−1=−6.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).\n【解答】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=ADAB,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【解答】解:(1)设y关于x的函数解析式是y=kx+b,\nb=615k+b=3,解得,k=−15b=6,即y关于x的函数解析式是y=−15x+6;(2)当h=0时,0=−310x+6,得x=20,当y=0时,0=−15x+6,得x=30,∵20<30,∴甲先到达地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:5101000×100%=51%;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×1771000=5.31万(人),\n答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:178896+702+224+178×100%=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:1771000×100%=17.7%,8.9%<17.7%,因此交警部门开展的宣传活动有效果.22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;( 假 )②若AD=BE=CF,则六边形ABCDEF是正六边形.( 假 )【解答】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,AB=BC=CD=DE=EABC=CD=DE=EA=ABAC=BD=CE=DA=BE,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:\n在△ABE、△BCA和△DEC中,AE=BA=DCAB=BC=DEBE=AC=CE,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,AE=BCCE=BEAC=CE,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=FA,在△AEF、△CAB和△ECD中,EF=AB=CDAF=CB=EDAE=CA=EC,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,\n在△BFE和△FBC中,EF=CBBE=FCBF=FB,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△FAE和△BCA中,AF=CB∠AFE=∠CBAEF=AB,∴△FAE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).\n(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=−b2,n=4c−b24,∴n=8b−b24,∴n=2b﹣m2,(3)y=x2+bx+2b=(x+b2)2−b24+2b,对称轴x=−b2,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=−b2≤0,当﹣5≤x≤1时,函数有最小值−b24+2b,当﹣5≤−b2<−2时,函数有最大值1+3b,当﹣2<−b2≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+b24−2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;\n当最大值25﹣3b时,25﹣3b+b24−2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求AFAP的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.【解答】解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴APCD=AFFD即a2=2−aa∴a=5−1∴AP=FD=5−1,\n∴AF=AD﹣DF=3−5∴AFAP=5−12(2)在CD上截取DH=AF∵AF=DH,∠PAF=∠D=90°,AP=FD,∴△PAF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP=5−1∵点E是AB中点,∴BE=AE=1=EM∴PE=PA+AE=5∵EC2=BE2+BC2=1+4=5,∴EC=5∴EC=PE,CM=5−1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH=5−1,CF=CF∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,\n∵EN⊥AB,AE=BE∴AQ=BQ=AP=5−1由旋转的性质可得AQ=AQ'=5−1,AB=AB'=2,Q'B'=QB=5−1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y=12x﹣2设点B'(x,12x﹣2)∴AB'=x2+(12x−2)2=2∴x=85∴点B'(85,−65)∵点Q'(5−1,0)∴B'Q'=(5−1−85)2+3625≠5−1∴点B旋转后的对应点B'不落在线段BN上.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/6/3010:00:28;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-20 15:00:03 页数:24
价格:¥3 大小:373.23 KB
文章作者:180****8757

推荐特供

MORE