2022中考数学预测卷(三)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2022中考数学预测卷三一、选择题(本大题共10小题,每小题3分,共30分)1.﹣3的绝对值是( )A.﹣3B.3C.D.2.中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为( )A.9.97×105B.99.7×105C.9.97×106D.0.997×1073.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是( )A.9B.8C.7D.64.一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集在数轴上表示正确的是( )A.B.C.D.5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.甲乙丙平均数7.97.98.0方差3.290.491.8根据以上图表信息,参赛选手应选( )A.甲B.乙C.丙D.丁6.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°7.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为( )A.(3,)B.(3,)C.(,)D.(,)8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为( )A.1:3B.1:5C.1:6D.1:119.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a,b的值分别为( )A.,B.,﹣C.,﹣D.﹣,10.在平面直角坐标系中,正方形A1B1C1D1,D1E1E2B2,A2B2C2D2,D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是( )A.()2016B.()2017C.()2016D.()2017 二、填空题(本小题共5小题,每小题3分,共15分)11.计算:+(π﹣2)0+(﹣1)2017= .12.已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是 .13.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,tanA=,则k的值为 .14.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为 .15.如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为 . 三、解答题(本题共8小题,共75分.)16.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.17.在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.月信息消费额分组统计表组别消费额(元)A10≤x<100B100≤x<200C20≤x<300D300≤x<400Ex≥400请结合图表中相关数据解答下列问题:(1)这次接受调查的有 户;(2)在扇形统计图中,“E”所对应的圆心角的度数是 ;(3)请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?18.如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为 ;②连接OD,当∠PBA的度数为 时,四边形BPDO是菱形.19.如图,在大楼AB的正前方有一斜坡CD,CD=4m,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)20.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21.根据下列要求,解答相关问题:(1)请补全以下求不等式﹣2x2﹣4x≥0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;抛物线的对称轴x=﹣1,开口向下,顶点(﹣1,2)与x轴的交点是(0,0),(﹣2,0),用三点法画出二次函数y=﹣2x2﹣4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程﹣2x2﹣4x=0的解为 ;③借助图象,写出解集:由图象可得不等式﹣2x2﹣4x≥0的解集为 .(2)利用(1)中求不等式解集的方法步骤,求不等式x2﹣2x+1<4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式ax2+bx+c>0(a>0)的解集.22.(1)问题发现:(1)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC,请判断:FG与CE的数量关系是 ,位置关系是 .(2)拓展探究:如图2,若点E,F分别是CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)类比延伸:如图3,若点E,F分别是BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.23.如图,二次函数y=ax2+bx+c的图象与x轴的交点为A,D(A在D的右侧),与y轴的交点为C,且A(4,0),C(0,﹣3),对称轴是直线x=1.(1)求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B,C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由. 参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.2.【考点】科学计数法.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9970000=9.97×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有6个正方体,第二层有2个正方体,那么共有6+2=8个正方体组成,故选B.4.【考点】一次函数与一元一次不等式;在数轴上表示不等式的解集.【分析】观察图象,直线y=kx+1落在直线y=﹣3x+b上方的部分对应的x的取值范围即为所求.【解答】解:∵一次函数y=﹣3x+b和y=kx+1的图象交点为P(3,4),∴当x≥3时,kx+1≥﹣3x+b,∴不等式kx+1≥﹣3x+b的解集为x≥3,在数轴上表示为:故选B.5.【考点】方差;算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.【解答】解:由图可知丁射击10次的成绩为:8,8,9,7,8,8,9,7,8,8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]=0.4,∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D.6.【考点】圆内接四边形的性质;圆心角、弧、弦的关系.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.7.【考点】坐标与图形变化﹣旋转;菱形的性质.【分析】首先根据菱形的性质,即可求得∠AOB的度数,又由将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,可求得∠B′OA的度数,然后在Rt△B′OF中,利用三角函数即可求得OF与B′F的长,则可得点B′的坐标.【解答】解:过点B作BE⊥OA于E,过点B′作B′F⊥OA于F,∴∠BE0=∠B′FO=90°,∵四边形OABC是菱形,∴OA∥BC,∠AOB=∠AOC,∴∠AOC+∠C=180°,∵∠C=120°,∴∠AOC=60°,∴∠AOB=30°,∵菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠B′OF=45°,在Rt△B′OF中,OF=OB′•cos45°=2×=,∴B′F=,∴点B′的坐标为:(,﹣).故选D.8.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质可知BO=DO,又因为E为OD的中点,所以DE:BE=1:3,根据相似三角形的性质可求出S△DEF:S△BAE.然后根据=,即可得到结论.【解答】解:∵O为平行四边形ABCD对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,∴DE:EB=1:3,又∵AB∥DC,∴△DFE∽△BAE,∴=()2=,∴S△DEF=S△BAE,∵=,∴S△AOB=S△BAE,∴S△DEF:S△AOB==1:6,故选C.9.【考点】二次函数图象与几何变换.【分析】确定出抛物线y=ax2+bx的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y=ax2+bx=x2+bx=(x+)2﹣,∴平移后抛物线的顶点坐标为(﹣,﹣),对称轴为直线x=﹣,当x=﹣时,y=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×(﹣)=.解得b=﹣,故选:C.10.【考点】规律型:点的坐标.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的边长是:()n﹣1,则正方形A2017B2017C2017D2017的边长为:()2016,故选:C. 二、填空题(本小题共5小题,每小题3分,共15分)11.【考点】实数的运算;零指数幂.【分析】直接利用零指数幂的性质以及立方根的定义分别化简进而求出答案.【解答】原式=﹣2+1﹣1=﹣2.故答案为:﹣2. 12.【考点】根的判别式.【分析】由一元二次方程的定义可得出a≠0,再利用根的判别式△=b2﹣4ac,套入数据即可得出△=(a﹣2)2≥0,可得出a≠2且a≠0,设方程的两个根分别为x1、x2,利用根与系数的关系可得出x1•x2=,再根据x1、x2均为正整数,a为整数,即可得出结论.【解答】解:∵方程ax2﹣(a+2)x+2=0是关于x的一元二次方程,∴a≠0.∵△=(a+2)2﹣4a×2=(a﹣2)2≥0,∴当a=2时,方程有两个相等的实数根,当a≠2且a≠0时,方程有两个不相等的实数根.∵方程有两个不相等的正整数根,∴a≠2且a≠0.设方程的两个根分别为x1,x2,∴x1•x2=,∵x1,x2均为正整数,∴为正整数,∵a为整数,a≠2且a≠0,∴a=1,故答案为:a=1.13.【考点】反比例函数图象上点的坐标特征.【分析】作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.【解答】解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=()2=(tanA)2=,又∵S△AOC=×2=1,∴S△OBD=,∴k=﹣.故答案为:﹣. 14.【考点】扇形面积的计算;二次函数的最值;勾股定理.【分析】由OC=4,点C在上,CD⊥OA,求得DC==,运用S△OCD=OD•,求得OD=2时△OCD的面积最大,运用阴影部分的面积=扇形AOC的面积﹣△OCD的面积求解.【解答】解:∵OC=4,点C在上,CD⊥OA,∴DC==∴S△OCD=OD•∴=OD2•(16﹣OD2)=﹣OD4+4OD2=﹣(OD2﹣8)2+16∴当OD2=8,即OD=2时△OCD的面积最大,∴DC===2,∴∠COA=45°,∴阴影部分的面积=扇形AOC的面积﹣△OCD的面积=﹣×2×2=2π﹣4,故答案为:2π﹣4.15.【考点】翻折变换(折叠问题);矩形的性质.【分析】如图1,根据折叠的性质得到AB′=AB=5,B′E=BE,根据勾股定理得到BE2=(3﹣BE)2+12,于是得到BE=,如图2,根据折叠的性质得到AB′=AB=5,求得AB=BF=5,根据勾股定理得到CF=4根据相似三角形的性质列方程得到CE=12,即可得到结论.【解答】解:如图1,∵将△ABE沿AE折叠,得到△AB′E,∴AB′=AB=5,B′E=BE,∴CE=3﹣BE,∵AD=3,∴DB′=4,∴B′C=1,∵B′E2=CE2+B′C2,∴BE2=(3﹣BE)2+12,∴BE=,如图2,∵将△ABE沿AE折叠,得到△AB′E,∴AB′=AB=5,∵CD∥AB,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∵AE垂直平分BB′,∴AB=BF=5,∴CF=4,∵CF∥AB,∴△CEF∽△ABE,∴,即=,∴CE=12,∴BE=15,综上所述:BE的长为:或15,故答案为:或15. 三、解答题(本题共8小题,共75分.)16.【考点】分式的化简求值;解一元二次方程﹣因式分解法.【分析】首先根据运算顺序和分式的化简方法,化简÷,然后应用因数分解法解一元二次方程,求出m的值是多少;最后把求出的m的值代入化简后的算式,求出算式÷的值是多少即可.【解答】解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式=== 17.【考点】扇形统计图;用样本估计总体;频数(率)分布表;频数(率)分布直方图.【分析】(1)根据A,B两组户数直方图的高度比为1:5,即两组的频数的比是1:5,据此即可求得A组的频数;利用A和B两组的频数的和除以两组所占的百分比即可求得总数;(2)用“E”组百分比乘以360°可得;(3)利用总数乘以百分比即可求得C组的频数,从而补全统计图;(4)利用总数2000乘以C,D,E的百分比即可.【解答】解:(1)A组的频数是:10×=2;∴这次接受调查的有(2+10)÷(1﹣8%﹣28%﹣40%)=50(户),故答案为:50;(2)“E”所对应的圆心角的度数是360°×8%=28.8°,故答案为:28.8°;(3)C组的频数是:50×40%=20,如图,(4)2000×(28%+8%+40%)=1520(户),答:估计月信息消费额不少于200元的约有1520户.18.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)根据中位线的性质得到DP∥AB,DP=AB,由SAS可证△CDP≌△POB;(2)①当四边形AOPD的AO边上的高等于半径时有最大面积,依此即可求解;②根据有一组对应边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形,再根据邻边相等的平行四边形是菱形,以及等边三角形的判定和性质即可求解.【解答】(1)证明:∵PC=PB,D是AC的中点,∴DP∥AB,∴DP=AB,∠CPD=∠PBO,∵BO=AB,∴DP=BO,在△CDP与△POB中,∴△CDP≌△POB(SAS);(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,(4÷2)×(4÷2)=2×2=4;②如图:∵DP∥AB,DP=BO,∴四边形BPDO是平行四边形,∵四边形BPDO是菱形,∴PB=BO,∵PO=BO,∴PB=BO=PO,∴△PBO是等边三角形,∴∠PBA的度数为60°.故答案为:4;60°.19.【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.【分析】(1)在直角三角形DCE中,利用锐角三角函数定义求出DE的长即可;(2)过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设BF=DF=x,表示出BC,BD,DC,由题意得到三角形BCD为直角三角形,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:(1)在Rt△DCE中,DC=4m,∠DCE=30°,∠DEC=90°,∴DE=DC=2m;(2)过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,即△BFD为等腰直角三角形,设BF=DF=xm,∵四边形DEAF为矩形,∴AF=DE=2m,即AB=(x+2)m,在Rt△ABC中,∠ABC=30°,∴BC====m,BD=BF=xm,DC=4m,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2=+16,解得:x=4+4,则AB=(6+4)m. 20.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据费用可得等量关系为:购买3个足球和2个篮球共需310元;购买2个足球和5个篮球共需500元,把相关数值代入可得一个足球、一个篮球的单价;(2)不等关系为:购买足球和篮球的总费用不超过5720元,列式求得解集后得到相应整数解,从而求解.【解答】(1)解:设购买一个足球需要x元,购买一个篮球需要y元,根据题意得,解得,∴购买一个足球需要50元,购买一个篮球需要80元.(2)方法一:解:设购买a个篮球,则购买(96﹣a)个足球.80a+50(96﹣a)≤5720,a≤30.∵a为正整数,∴a最多可以购买30个篮球.∴这所学校最多可以购买30个篮球.方法二:解:设购买n个足球,则购买(96﹣n)个篮球.50n+80(96﹣n)≤5720,n≥65∵n为整数,∴n最少是6696﹣66=30个.∴这所学校最多可以购买30个篮球.21.【考点】二次函数与不等式(组);二次函数的图象;二次函数的性质.【分析】(1)直接解方程进而利用函数图象得出不等式﹣2x2﹣4x≥0的解集;(2)首先画出y=x2﹣2x+1的函数图象,再利用当y=4时,方程x2﹣2x+1=4的解,得出不等式x2﹣2x+1<4的解集;(3)利用ax2+bx+c=0的解集,利用函数图象分析得出答案.【解答】解:(1)②方程﹣2x2﹣4x=0的解为:x1=0,x2=﹣2;③不等式﹣2x2﹣4x≥0的解集为:﹣2≤x≤0;(2)①构造函数,画出图象,如图2,:构造函数y=x2﹣2x+1,抛物线的对称轴x=1,且开口向上,顶点坐标(1,0),关于对称轴x=1对称的一对点(0,1),(2,1),用三点法画出图象如图2所示:;②数形结合,求得界点:当y=4时,方程x2﹣2x+1=4的解为:x1=﹣1,x2=3;③借助图象,写出解集:由图2知,不等式x2﹣2x+1<4的解集是:﹣1<x<3;(3)解:①当b2﹣4ac>0时,关于x的不等式ax2+bx+c>0(a>0)的解集是x>或x<.当b2﹣4ac=0时,关于x的不等式ax2+bx+c>0(a>0)的解集是:x≠﹣;当b2﹣4ac<0时,关于x的不等式ax2+bx+c>0(a>0)的解集是全体实数.22.【考点】四边形综合题.【分析】(1)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;(3)证明△CBF≌△DCE,即可证明四边形CEGF是平行四边形,即可得出结论.【解答】解:(1)FG=CE,FG∥CE;理由如下:过点G作GH⊥CB的延长线于点H,如图1所示:则GH∥BF,∠GHE=90°,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE,∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;故答案为:FG=CE,FG∥CE;(2)FG=CE,FG∥CE仍然成立;理由如下:过点G作GH⊥CB的延长线于点H,如图2所示:∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE,∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)FG=CE,FG∥CE仍然成立.理由如下:∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°,在△CBF与△DCE中,,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG∴∠DEC+∠CEG=90°∵∠CDE+∠DEC=90°∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE. 23.【考点】二次函数综合题.【分析】(1)利用抛物线的对称性可得到点D的总表,然后将A,C,D的坐标代入抛物线的解析式可求得a,b,c的值,从而可得到二次函数的解析式;(2)设M(m,x2﹣x﹣3),|yM|=﹣m2+m+3,由S=S△ACM+S△OAM可得到S与m的函数关系式,然后利用配方法可求得S的最大值;(3)当AB为平行四边形的边时,则AB∥PC,则点P的纵坐标为﹣3,将y=﹣3代入抛物线的解析式可求得点P的横坐标;当AB为对角线时,AB与CP互相平分,则点P的纵坐标为3,把y=3代入抛物线的解析式可求得点P的横坐标.【解答】解:(1)∵A(4,0),对称轴是直线x=l,∴D(﹣2,0).又∵C(0,﹣3)∴解得.a=,b=﹣,c=﹣3,∴二次函数解析式为:y=x2﹣x﹣3.(2)如图1所示:设M(m,x2﹣x﹣3),|yM|=﹣m2+m+3,∵S=S△ACM+S△OAM∴S=×OC×m+×OA×|yM|=×3×m+×4×(﹣m2+m+3)=﹣m2+3m+6=﹣(m﹣2)2+9,当m=2时,s最大是9.(3)当AB为平行四边形的边时,则AB∥PC,∴PC∥x轴.∴点P的纵坐标为﹣3.将y=﹣3代入得:x2﹣x﹣3=﹣3,解得:x=0或x=2.∴点P的坐标为(2,﹣3).当AB为对角线时.∵ABCP为平行四边形,∴AB与CP互相平分,∴点P的纵坐标为3.把y=3代入得:x2﹣x﹣3=3,整理得:x2﹣2x﹣16=0,解得:x=1+或x=1﹣.综上所述,存在点P(2,﹣3)或P(1+,3)或P(1﹣,3)使得以A,B、C,P四点为顶点的四边形为平行四边形.
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)