2019-2020学年四川省广元市高考数学一诊试卷(文科)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
四川省广元市高考数学一诊试卷(文科) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣2x﹣8≥0},N={x|﹣3≤x<3},则M∩N=( )A.[﹣3,3)B.[﹣3,﹣2]C.[﹣2,2]D.[2,3)2.(5分)“x>3且y>3”是“x+y>6”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β,下列命题中正确的是( )A.若α⊥β,则m⊥nB.若α∥β,则m∥nC.若m⊥n,则α⊥βD.若n⊥α,则α⊥β4.(5分)已知向量=(3,1),=(2k﹣1,k),且(),则k的值是( )A.﹣1B.或﹣1C.﹣1或D.5.(5分)若cos(﹣α)=,则sin2α=( )A.B.C.﹣D.﹣6.(5分)执行如图所求的程序框图,输出的值是( )A.4B.5C.6D.77.(5分)二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=,应用合情推理,若四维空间中,“超球”的三维测度V=8πr3,则其四维测度W=( )第22页共22页,A.2πr4B.3πr4C.4πr4D.6πr48.(5分)已知函数y=sin(ωx+φ)(ω>0,0<φ<)一个周期内的图象如图所示,,C为图象上的最高点,则ω,φ的值为( )A.B.ω=,φ=C.D.9.(5分)在区间[﹣1,1]上任选两个数x和y,则x2+y2≥1的概率为( )A.B.C.D.10.(5分)已知定义在R上的函数f(x)的图象关于(1,1)对称,g(x)=(x﹣1)3+1,若函数f(x)图象与函数g(x)图象的次点为(x1,y1),(x2,y2),…,(x2018,y2018),则(xi+yi)=( )A.8072B.6054C.4036D.201811.(5分)函数,若关于x的方程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的零点,则a的取值范围( )A.(1,2)B.C.D.12.(5分)若正项递增等比数列{an}满足1+(a2﹣a4)+λ(a3﹣a5)=0(λ∈R),则a8+λa9的最小值为( )A.B.C.D. 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知a是实数,i是虚数单位,若z=a2﹣1+(a+第22页共22页,1)i是纯虚数,则a= .14.(5分)设变量x,y满足约束条件:,则目标函数z=的最小值为 .15.(5分)如图,网格纸上的小正方形边长为1,粗线或虚线表示一个三棱锥的三视图,则此三棱锥的外接球的体积为 .16.(5分)在△ABC中,AB=2AC=6,=2,点P是△ABC所在平面内一点,则当222取得最小值时, . 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{an}的前n项和Sn=k(3n﹣1),且a3=27.(1)求数列{an}的通项公式;(2)若bn=log3an,求数列{}的前n项和Tn.18.(12分)设函数f(x)=cos(2x+)+2cos2x.(1)求f(x)的最大值,并写出使f(x)取最大值时x的集合;(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=,b+c=2,求a的最小值.19.(12分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成[0,10).[10,20),[20,30),[30,40),[40,50),[第22页共22页,50,60)六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.课外体育不达标课外体育达标合计男60 女 110合计 (1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?(2)在[0,10),[40,50)这两组中采取分层抽样,抽取6人,再从这6名学生中随机抽取2人参加体育知识问卷调查,求这2人中一人来自“课外体育达标”和一人来自“课外体育不达标”的概率.附参考公式与:K2=P(K2≥k0)0.150.050.0250.0100.0050.001k02.7023.8415.0246.6357.87910.82820.(12分)如图四棱锥P﹣ABCD,底面梯形ABCD中,AB∥DC,平面PAD⊥平面ABCD,已知BD=2AD=4,AB=2DC=2BC=2.(1)求证:BD⊥PA;(2)线段PC上是否存在点M,使三棱锥P﹣ABD体积为三棱锥P﹣MBD体积的6倍.若存在,找出点M的位置;若不存在,说明理由.第22页共22页,21.(12分)已知函数f(x)=xlnx﹣+a(a∈R)在其定义域内有两个不同的极值点.(1)求a的取值范围;(2)证明:. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),以O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为(ρ∈R).(1)求曲线C的极坐标方程;(2)设直线l与曲线C相交于A,B两点,求|AB|的值. [选修4-5:不等式选讲]23.已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.(1)求M的值;(2)正数a,b,c满足a+2b+c=M,求证:+≥1. 第22页共22页,四川省广元市高考数学一诊试卷(文科)参考答案与试题解析 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣2x﹣8≥0},N={x|﹣3≤x<3},则M∩N=( )A.[﹣3,3)B.[﹣3,﹣2]C.[﹣2,2]D.[2,3)【解答】解:∵集合M={x|x2﹣2x﹣8≥0}={x|x≤﹣2,或x≥4},N={x|﹣3≤x<3},∴M∩N={x|﹣3≤x≤﹣2}=[﹣3,﹣2].故选:B. 2.(5分)“x>3且y>3”是“x+y>6”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件【解答】解:当x>3且y>3时,x+y>6成立,即充分性成立,若x=6,y=2满足x+y>6,但x>3且y>3不成立,即必要性不成立,故“x>3且y>3”是“x+y>6”成立的充分不必要条件,故选:A 3.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β,下列命题中正确的是( )A.若α⊥β,则m⊥nB.若α∥β,则m∥nC.若m⊥n,则α⊥βD.若n⊥α,则α⊥β【解答】解:对于A,若α⊥β,则m、n位置关系不定,不正确;对于B,若α∥β,则m∥n或m,n异面,不正确;第22页共22页,对于C,若m⊥n,则α、β位置关系不定,不正确;对于D,根据平面与平面垂直的判定可知正确.故选D. 4.(5分)已知向量=(3,1),=(2k﹣1,k),且(),则k的值是( )A.﹣1B.或﹣1C.﹣1或D.【解答】解:∵向量=(3,1),=(2k﹣1,k),∴+=(2k+2,1+k),∵(+)⊥,∴(+)•=0,则(2k﹣1)(2k+2)+k(1+k)=0,即5k2+3k﹣2=0得(k﹣1)(5k+2)=0,得k=﹣1或k=,故选:C. 5.(5分)若cos(﹣α)=,则sin2α=( )A.B.C.﹣D.﹣【解答】解:法1°:∵cos(﹣α)=,∴sin2α=cos(﹣2α)=cos2(﹣α)=2cos2(﹣α)﹣1=2×﹣1=﹣,法2°:∵cos(﹣α)=(sinα+cosα)=,∴(1+sin2α)=,∴sin2α=2×﹣1=﹣,第22页共22页,故选:D. 6.(5分)执行如图所求的程序框图,输出的值是( )A.4B.5C.6D.7【解答】解:模拟程序的运行,可得n=5,k=0不满足条件n为偶数,执行循环体后,n=16,k=1,不满足退出循环的条件;满足条件n为偶数,执行循环体后,n=8,k=2,不满足退出循环的条件;满足条件n为偶数,执行循环体后,n=4,k=3,不满足退出循环的条件;满足条件n为偶数,执行循环体后,n=2,k=4,不满足退出循环的条件;满足条件n为偶数,执行循环体后,n=1,k=5,满足退出循环的条件,输出k的值为5.故选:B. 7.(5分)二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=,应用合情推理,若四维空间中,“超球”的三维测度V=8πr3,则其四维测度W=( )A.2πr4B.3πr4C.4πr4D.6πr4【解答】解:对于二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,(πr2)′=2πr,三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积),()′=4πr2,四维空间中,“超球”的三维测度V=8πr3,∵(2πr4)′=8πr3,∴“超球”的四维测度W=2πr4,故选:A.第22页共22页, 8.(5分)已知函数y=sin(ωx+φ)(ω>0,0<φ<)一个周期内的图象如图所示,,C为图象上的最高点,则ω,φ的值为( )A.B.ω=,φ=C.D.【解答】解:根据函数y=sin(ωx+φ)(ω>0,0<φ<)的图象知,T=﹣(﹣)=,∴T==π,解得ω=2;又,∴sin[2×(﹣)+φ]=0,又0<φ<,∴φ=.故选:C. 9.(5分)在区间[﹣1,1]上任选两个数x和y,则x2+y2≥1的概率为( )A.B.C.D.【解答】解:如图,在区间[﹣1,1]上任选两个数x和y,则,平面区域是边长为2的正方形,x2+y2≥1的平面区间是圆外侧且正方形内侧的阴影部分,∴由几何概型概率计算公式得:第22页共22页,x2+y2≥1的概率为:p===1﹣.故选:A. 10.(5分)已知定义在R上的函数f(x)的图象关于(1,1)对称,g(x)=(x﹣1)3+1,若函数f(x)图象与函数g(x)图象的次点为(x1,y1),(x2,y2),…,(x2018,y2018),则(xi+yi)=( )A.8072B.6054C.4036D.2018【解答】解:∵g(x)的图象是由y=x3的函数图象先向右平移1个单位,再向上平移1个单位后得到的,∴g(x)的图象关于点(1,1)对称,又f(x)的图象关于点(1,1)对称,∴f(x)与g(x)的2018个交点中,两两关于点(1,1)对称.∴(xi+yi)=+=+=4036.故选C. 第22页共22页,11.(5分)函数,若关于x的方程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的零点,则a的取值范围( )A.(1,2)B.C.D.【解答】解:作出f(x)的函数图象如图所示:令f(x)=t,则2t2﹣(2a+3)t+3a=0,∴t=a或t=.(1)若a≤1或a≥2时,则由图象可知f(x)=a只有一解x=0,而f(x)=有两解,故而关于x的方程2f2(x)﹣(2a+3)f(x)+3a=0有三个不同的零点,不符合题意;(2)若a=,由图象可知f(x)=a有三解,故而关于x的方程2f2(x)﹣(2a+3)f(x)+3a=0有三个不同的零点,不符合题意;(3)若1<a<或<a<2,则由图象可知f(x)=a有三解,f(x)=有两解,故而关于x的方程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的零点,符合题意;综上,a的范围是(1,)∪(,2).故选D.第22页共22页, 12.(5分)若正项递增等比数列{an}满足1+(a2﹣a4)+λ(a3﹣a5)=0(λ∈R),则a8+λa9的最小值为( )A.B.C.D.【解答】解:设等比数列的公比为q(q>1),1+(a2﹣a4)+λ(a3﹣a5)=0,可得λ=,则a8+λa9=a8++=a8++=a8+﹣a8=,设t=q2﹣1(t>0),q2=t+1,则设f(t)==,f′(t)==,当t>时,f(t)递增;当0<t<时,f(t)递减.可得t=处,此时q=,f(t)取得最小值,且为.则a8+λa9的最小值为.故选C. 第22页共22页,二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知a是实数,i是虚数单位,若z=a2﹣1+(a+1)i是纯虚数,则a= 1 .【解答】解:∵z=a2﹣1+(a+1)i是纯虚数,∴,解得a=1.故答案为:1. 14.(5分)设变量x,y满足约束条件:,则目标函数z=的最小值为 1 .【解答】解:z的几何意义为区域内点到点G(0,﹣1)的斜率,作出不等式组对应的平面区域如图:由图象可知,AG的斜率最小,由解得,即A(2,1),则AG的斜率k=,故答案为:1 第22页共22页,15.(5分)如图,网格纸上的小正方形边长为1,粗线或虚线表示一个三棱锥的三视图,则此三棱锥的外接球的体积为 4π .【解答】解:直观图如图所示的正四面体,构造如图所示的正方体,正四面体在正方体中的位置如图所示,正方体的边长为2,此三棱锥的外接球与正方体的外接球是同一个球,∴此三棱锥的外接球的半径为R=三棱锥的外接球的体积为V=.故答案为:4π. 16.(5分)在△ABC中,AB=2AC=6,=2,点P是△ABC所在平面内一点,则当222取得最小值时, ﹣9 .【解答】解:∵=2,||•||•cosB=||2,∴||•cosB=||=6,∴⊥,即∠A=,以A为坐标原点建立如图所示的坐标系,第22页共22页,则B(6,0),C(0,3),设P(x,y),则222=x2+y2+(x﹣6)2+y2+x2+(y﹣3)2,=3x2﹣12x+3y2﹣6y+45,=3[(x﹣2)2+(y﹣1)2+10],∴当x=2,y=1时取的最小值,此时•=(2,1)•(﹣6,3)=﹣12+3=﹣9,故答案为:﹣9. 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{an}的前n项和Sn=k(3n﹣1),且a3=27.(1)求数列{an}的通项公式;(2)若bn=log3an,求数列{}的前n项和Tn.【解答】解:(1)数列{an}的前n项和Sn=k(3n﹣1),且a3=27.当n=3时,,解得,当n≥2时,=3n,由于:a1=S1=3也满足上式,则:.第22页共22页,(2)若,所以:=,所以:. 18.(12分)设函数f(x)=cos(2x+)+2cos2x.(1)求f(x)的最大值,并写出使f(x)取最大值时x的集合;(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=,b+c=2,求a的最小值.【解答】解:(1)函数f(x)=cos(2x+)+2cos2x.=,∵,故:f(x)的最大值为:2.要使f(x)取最大值,,即:(k∈Z),解得:(k∈Z),则x的集合为:(k∈Z),(2)由题意,,即:,又∵0<A<π,∴,∴,∴.在△ABC中,b+c=2,,第22页共22页,由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,由于:=1,所以:当b=c=1时,等号成立.则:a2≥4﹣1=3,即:.则a的最小值为. 19.(12分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成[0,10).[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.课外体育不达标课外体育达标合计男60 30 90 女 90 20 110合计 150 50 200 (1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?(2)在[0,10),[40,50)这两组中采取分层抽样,抽取6人,再从这6名学生中随机抽取2人参加体育知识问卷调查,求这2人中一人来自“课外体育达标”和一人来自“课外体育不达标”的概率.附参考公式与:K2=P(K2≥k0)0.150.050.0250.0100.0050.001k02.7023.8415.0246.6357.87910.828第22页共22页,【解答】解:(1)由题意得“课外体育达标”人数:200×[(0.02+0.005)×10]=50,则不达标人数为150,∴列联表如下:课外体育不达标课外体育达标合计男603090女9020110合计15050200∴k2==≈6.060<6.635,∴在犯错误的概率不超过0.01的前提下没有没有理由(或不能)认为“课外体育达标”与性别有关(2)由题意在[0,10),[40,50)分别有20人,40人,则采取分层抽样在[0,10)抽取的人数为:人,在[40,50)抽取的人数为:人,[0,10)抽取的人为A,B,在[40,50)抽取的人为a,b,c,d,从这6任中随机抽取2人的情况为:AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd共15种,2人中一人来自“课外体育达标”和一人来自“课外体育不达标”共有:Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd共8种,∴. 20.(12分)如图四棱锥P﹣ABCD,底面梯形ABCD中,AB∥DC,平面PAD⊥第22页共22页,平面ABCD,已知BD=2AD=4,AB=2DC=2BC=2.(1)求证:BD⊥PA;(2)线段PC上是否存在点M,使三棱锥P﹣ABD体积为三棱锥P﹣MBD体积的6倍.若存在,找出点M的位置;若不存在,说明理由.【解答】(1)证明:,∴AB2=AD2+BD2,∴BD⊥AD,又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴BD⊥面PAD,又AP⊂面PAD,∴BD⊥PA.(2)解:假设存在点M满足条件,设CM=mCP(m∈[0,1]),点P到面ABCD的距离为h1,点M到面ABCD的距离为h2,由相似三角形可知,,∴,∴点M是PC上的一个靠近点P的三等分点. 21.(12分)已知函数f(x)=xlnx﹣+a(a∈R)在其定义域内有两个不同的极值点.(1)求a的取值范围;第22页共22页,(2)证明:.【解答】解:(1)由题意知,函数f(x)的定义域为(0,+∞),f′(x)=lnx﹣ax,∵函数f(x)在其定义域内有两个不同的极值点.∴方程f′(x)=0在(0,+∞)有两个不同根即方程lnx﹣ax=0在(0,+∞)有两个不同根,令g(x)=lnx﹣ax,则g′(x)=﹣a当a≤0时,由g′(x)>0恒成立,即g(x)在(0,+∞)内为增函数,显然不成立当a>0时,由g′(x)>0解得,即g(x)在内为增函数,内为减函数,故即可,解得综上可知a的取值范围为;(2)证明:由(1)知:当时,恒成立∴…上式n个式子相加得:即又∵∴,∴.第22页共22页, 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),以O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为(ρ∈R).(1)求曲线C的极坐标方程;(2)设直线l与曲线C相交于A,B两点,求|AB|的值.【解答】解:(1)曲线C的参数方程为,得曲线C的普通方程:x2+y2﹣4x﹣12=0所以曲线C的极坐标方程为:ρ2﹣4ρcosθ=12(2)设A,B两点的极坐标方程分别为,|AB|=|ρ1﹣ρ2|又A,B在曲线C上,则ρ1,ρ2是ρ2﹣4ρcosθ﹣12=0的两根∴,所以: [选修4-5:不等式选讲]23.已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.(1)求M的值;(2)正数a,b,c满足a+2b+c=M,求证:+≥1.【解答】解:(1)由绝对值不等式得|x﹣2|﹣|x+3|≥≤|x﹣2﹣(x+3)|=5,若不等式|x﹣2|﹣|x+3|≥|m+1|有解,第22页共22页,则满足|m+1|≤5,解得﹣6≤m≤4.∴M=4.(2)由(1)知正数a,b,c满足足a+2b+c=4,即[(a+b)+(b+c)]=1∴+=[(a+b)+(b+c)](+)=(1+1++)≥(2+2)≥×4=1,当且仅当=即a+b=b+c=2,即a=c,a+b=2时,取等号.∴+≥1成立. 第22页共22页
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)