首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
2022届高考数学二轮专题复习24利用导数证明不等式
2022届高考数学二轮专题复习24利用导数证明不等式
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/15
2
/15
剩余13页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
利用导数证明不等式1.隐零点问题1.已知函数.(1)当时,求函数的单调递增区间;(2)当时,证明:(其中e为自然对数的底数).【答案】(1)答案见解析;(2)证明见解析.【解析】(1)的定义域为,,当,即时,在递增.当时,,在上递增.当,即时,在上,递增.综上所述,当时,的递增区间为;当时,的递增区间为;当时,,的递增区间为.(2)当时,由化简得,构造函数,,在上递增,,故存在,使得,即.15 当时,递减;当时,递增,所以时,取得极小值,也即是最小值.,所以,故.2.已知函数.(1)设是的极值点,求的单调区间;(2)当时,求证:.【答案】(1)单调递减区间为,单调递增区间为;(2)证明见解析.【解析】(1)的定义域为,,是的极值点,,即,,在上单调递增,在上单调递增,在上单调递增,且,的单调递减区间为,单调递增区间为.(2)由可得,所以,令,则,在上单调递增,且.,使得,有,①且在区间上单调递减,在区间上单调递增,15 ,由①得,即有,,,又在区间上单调递增,,,,,结论得证.3.已知函数.(1)讨论的单调性;(2)若函数有两个不大于的极值点,证明:.【答案】(1)答案见解析;(2)证明见解析.【解析】(1)定义域为R,由,得,当时,,此时在上单调递增;在上单调递减.当时,令,即,,因为,所以,令,则或,即在和上单调递增.令,则,即在上单调递减.15 当时,令,即.因为,所以,令,则或,即在和上单调递增.令,则,即在上单调递减.综上所述:当时,在上单调递增,在上单调递减.当时,在和上单调递增,在上单调递减.当时,在和上单调递增,在上单调递减.(2)因为函数有两个不大于的极值点,由(1)知,因为且,所以,所以要证明,只要证明,即要证明,令,则,令,则,令,则,所以在上单调递增,因为,,15 所以在上有唯一零点,设为,且当时,,单调递减,当时,,单调递增,所以.因为,即,即,所以,所以,所以原不等式成立.2.极值点偏移问题1.(多选)已知函数有两个极值点,,则()A.a的取值范围为B.C.D.【答案】BCD【解析】由题设,且定义域为,则,当时,则单调递增,不可能存在两个零点,即不可能存在两个极值点,A错误;当时,即单调递增,当时,即单调递减,即,当时,,所以至多有一个零点;当时,,而,当趋向于0时趋于负无穷大,当趋向于正无穷时趋于负无穷大,综上,,在内各有一个零点,且15 ,B:由且趋向于0时趋于负无穷大,所以,故,令,,又,所以单调递减,故当时,,又,所以,而,因此,故正确;C:,令,显然有,令,显然,因此有,设,则,当时,单调递减,当时,单调递增,因为,所以,令,即,因为,所以单调递增,因为,所以,15 而,所以,因为,所以,当时,单调递减,因此有,即,正确;D:由,则,故,正确,故选BCD.2.已知函数.(1)证明:在R上为增函数;(2)若,证明:.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意,,令,则,令,则,故在区间上,,为减函数;在区间上,,为增函数,故,故在R上为增函数.(2)由(1)知为增函数,且,故由,,可得,则.欲证,只需证,即证,即证.令,则,令,则,故为增函数,,15 故为增函数,,故,则,原式得证.3.已知函数.(1)讨论函数的单调性;(2)若函数在上有两个不相等的零点,求证:.【答案】(1)当时,单调递增,当时,在上单调递增,在上单调递减;(2)证明见解析.【解析】(1),.①当时,恒成立,单调递增;②当时,由,得,单调递增,由,得,单调递减.综上:当时,单调递增;当时,在上单调递增,在上单调递减.(2)∵在上有两个不相等的零点,,不妨设,∴在上有两个不相等的实根,令,,∴,由,得,单调递减;由,得,单调递增,,,,,∴,要证,即证,15 又∵,只要证,即证,∵,即证,即证,即证,即证,令,,∴,令,,则,当时,恒成立,所以在上单调递增,又,∴,∴,∴,∴在上递增,∴,∴,∴.4.已知.(1)若函数在上有极值,求实数a的取值范围;(2)已知方程有两个不等实根,证明:(注:是自然对数的底数)【答案】(1);(2)证明见解析.【解析】(1),定义域为,.令,解得;令,解得,所以在上单增,在上单减,在处取得唯一的极值.要使函数在上有极值,只需,解得,即实数a的取值范围为.15 (2)记函数,则函数有两个不等实根.因为,,两式相减得,,两式相加得,.因为,所以要证,只需证明,只需证明,只需证明,证.设,只需证明.记,则,所以在上单增,所以,所以,即,所以.即证.3.双变量问题1.若函数存在两个极值点和,则取值范围为__________.【答案】【解析】令,则,由且,解得.15 ,令,,在区间上递减,.所以取值范围是,故答案为.2.已知函数.(1)若,求函数的单调区间;(2)设存在两个极值点,且,若,求证:.【答案】(1)在和上单调递增,在上单调递减;(2)证明见解析.【解析】(1)解:当时,,,所以,令,解得或;令,解得,所以函数在和上单调递增,在上单调递减.(2)解:,,,因为存在两个极值点,,所以存在两个互异的正实数根,,所以,,则,所以,15 所以,令,则,,,在上单调递减,,而,即,.3.已知函数,在处的切线与直线平行.(1)求实数的值,并判断函数的单调性;(2)若函数有两个零点,求证:.【答案】(1),函数在上单调递减,在上单调递增;(2)证明见解析.【解析】(1)解:函数的定义域,因为,所以解得,,,令,解得,故在上单调递减,令,解得,故在上单调递增.(2)解:由,为函数的两个零点,得,15 两式相减,得,即,,因此,,令,由,得,则,构造函数,则,所以在上单调递增,故,,又,所以,所以,故,命题得证.4.其它1.已知函数.(1)求函数的单调区间和极值;(2)当时,求证:.【答案】(1)单调递增区间为,单调递减区间为,极小值为,没有极大值;(2)证明见解析.【解析】(1)易知函数定义域为R,∵,∴,令,解得,在上单调递增,,解得,在上单调递减,即的单调递增区间为,单调递减区间为,15 ∴函数的极小值为,没有极大值.(2)解法一:要证,即证,设,要证原不等式成立即证成立,∵,∵,∴(当且仅当,时等号成立),由(1)知(等号成立),∴,∴在单调递增,∴,∴当时,得证.解法二:要证,即证,设,要证原不等式成立即证成立,∵,设,则,令,则,∵,,又,∴,即在单调递增,∴,即在单调递增,∴,∴,即在单调递增,∴,∴当时,得证.2.已知函数.15 (1)讨论函数的单调性;(2)证明:对任意正整数n,.【答案】(1)见解析;(2)证明见解析.【解析】(1)的定义域为,,令,得或,①当,即时,若,则,递增;若,则,递减;②当,即时,若,则,递减;若,则,递增;若,则,递减,综上所述,当时,在,单调递减,在单调递增;当时,在单调递增,在单调递减.(2)由(2)知当时,在上递减,,即,,,,2,3,,,,.15
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022届高三数学二轮复习:专题突破练6利用导数证明问题(有解析)
2023高考数学统考一轮复习课后限时集训21利用导数证明不等式理含解析新人教版202302272127
2023版高考数学一轮复习课后限时集训21利用导数证明不等式含解析20230318184
新课标天津市2022年高考数学二轮复习专题能力训练8利用导数解不等式及参数的取值范围理
新课标2022届高考数学二轮复习专题二函数与导数专题能力训练8利用导数解不等式及参数的取值范围理
天津市2022年高考数学二轮复习专题能力训练8利用导数解不等式及参数范围文
备战2022高考数学大二轮复习专题二函数与导数专题能力训练8利用导数解不等式及参数的取值范围理
全国通用2022高考数学二轮复习专题一第5讲导数与不等式的证明存在性及恒成立问题训练文
2022版高考数学二轮复习专题二函数与导数专题突破练8利用导数证明问题及讨论零点个数文
2022年春高考数学(文)二轮专题复习训练:专题五 数列、推理与证明、不等式
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-03-16 15:00:06
页数:15
价格:¥3
大小:534.36 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划