首页

2021年四川省广安市中考数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/19

2/19

剩余17页未读,查看更多内容需下载

2021年四川省广安市中考数学试卷一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上。本大题共10个小题,每小题3分,共30分)1.16的平方根是(  )A.4B.±4C.8D.±82.下列运算中,正确的是(  )A.a2•a5=a10B.(a﹣b)2=a2﹣b2C.(﹣3a3)2=6a6D.﹣3a2b+2a2b=﹣a2b3.到2021年6月3日,我国31个省(自治区、直辖市)和新疆生产建设兵团,累计接种新冠疫苗约7.05亿剂次,请将7.05亿用科学记数法表示(  )A.7.05×107B.70.5×108C.7.05×108D.7.05×1094.下列几何体的主视图既是轴对称图形又是中心对称图形的是(  )A.B.C.D.5.关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,则a的取值范围是(  )A.a≤且a≠﹣2B.a≤C.a<且a≠﹣2D.a<6.下列说法正确的是(  )A.为了了解全国中学生的心理健康情况,选择全面调查B.在一组数据7,6,5,6,6,4,8中,众数和中位数都是6C.“若a是实数,则|a|>0”是必然事件D.若甲组数据的方差S甲2=0.02,乙组数据的方差S乙2=0.12,则乙组数据比甲组数据稳定7.若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是(  )A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y18.如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为(  )第19页(共19页) A.65°B.70°C.75°D.80°9.如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走(  )米.A.6π﹣6B.6π﹣9C.12π﹣9D.12π﹣1810.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0,②4a﹣2b+c<0,③a﹣b≥x(ax+b),④3a+c<0,正确的有(  )A.1个B.2个C.3个D.4个二、填空题(请把最简答案填写在答题卡相应位置。本大题共6个小题,每小题3分,共18分)11.函数y=的自变量x的取值范围是  .12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是  .13.一个三角形的两边长分别为3和5,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长为  .14.若x、y满足,则代数式x2﹣4y2的值为  .15.如图,将三角形纸片ABC折叠,使点B、C都与点A重合,折痕分别为DE、FG.已知∠ACB=150°,AE=EF,DE=,则BC的长为  .第19页(共19页) 16.如图,在平面直角坐标系中,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2也落在直线y=﹣x上,以此进行下去…若点B的坐标为(0,3),则点B21的纵坐标为  .三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.计算:(3.14﹣π)0﹣+|1﹣|+4sin60°.18.先化简:÷(a﹣),再从﹣1,0,1,2中选择一个适合的数代入求值.19.如图,四边形ABCD是菱形,点E、F分别在边AB、AD的延长线上,且BE=DF,连接CE、CF.求证:CE=CF.20.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象交于A(﹣1,n),B(3,﹣2)两点.(1)求一次函数和反比例函数的解析式;(2)点P在x轴上,且满足△ABP的面积等于4,请直接写出点P的坐标.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21.在中国共产党成立100周年之际,我市某中学开展党史学习教育活动.为了了解学生学习情况,在七年级随机抽取部分学生进行测试,并依据成绩(百分制)绘制出以下两幅不完整的统计图.请根据图中信息回答下列问题:第19页(共19页) (1)本次抽取调查的学生共有  人,扇形统计图中表示C等级的扇形圆心角度数为  .(2)A等级中有2名男生,2名女生,从中随机抽取2人参加学校组织的知识问答竞赛,请用画树状图或列表的方法,求恰好抽到一男一女的概率.22.国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示.水果进价甲乙进价(元/千克)xx+4售价(元/千克)2025已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求x的值;(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?23.图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄AB与地面DE平行,踏板CD长为1.5m,CD与地面DE的夹角∠CDE=15°,支架AC长为1m,∠ACD=75°,求跑步机手柄AB所在直线与地面DE之间的距离.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)24.如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB的端点都在格点上.要求以AB为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形.第19页(共19页) 五、推理论证题(9分)25.如图,AB是⊙O的直径,点F在⊙O上,∠BAF的平分线AE交⊙O于点E,过点E作ED⊥AF,交AF的延长线于点D,延长DE、AB相交于点C.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为5,tan∠EAD=,求BC的长.六、拓展探索题(10分)26.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c的图象与坐标轴相交于A、B、C三点,其中A点坐标为(3,0),B点坐标为(﹣1,0),连接AC、BC.动点P从点A出发,在线段AC上以每秒个单位长度向点C做匀速运动;同时,动点Q从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.(1)求b、c的值.(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使△MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.第19页(共19页) 声明:试题解析著作权鄂州市2021年初中毕业生学业考试数学试题学校:_______________考生姓名:_______________准考证号:注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试题卷上无效。4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。答在试题卷上无效。5.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。6.考生不准使用计算器。一、选择题(本大题共10小题,每小题3分,共计30分)1.实数6的相反数等于A.B.6C.D.2.下列运算正确的是A.B.C.D.3.“国士无双”是人民对“杂交水稻之父”袁隆平院士的赞誉.下列四个汉字中是轴对称图形的是A.B.C.D.4.下列四个几何体中,主视图是三角形的是A.B.C.D.5.已知锐角,如图,按下列步骤作图:①在边取一点,以为圆心,长为半径画,交于点,连接.②以为圆心,长为半径画,交于点,连接.则的度数为第19页(共19页) A.B.C.D.6.已知为实数﹐规定运算:,,,,……,.按上述方法计算:当时,的值等于A.B.C.D.7.数形结合是解决数学问题常用的思想方法.如图,直线与直线相交于点.根据图象可知,关于的不等式的解集是A.B.C.D.8.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心为圆心的圆,如图2.已知圆心在水面上方,且被水面截得的弦长为6米,半径长为4米.若点为运行轨道的最低点,则点到弦所在直线的距离是图1图2A.1米B.米C.2米D.米第19页(共19页) 9.二次函数的图象的一部分如图所示.已知图象经过点,其对称轴为直线.下列结论:①;②;③;④若抛物线经过点,则关于的一元二次方程的两根分别为,5.上述结论中正确结论的个数为A.1个B.2个C.3个D.4个10.如图,中,,,.点为内一点,且满足.当的长度最小时,的面积是A.3B.C.D.二、填空题(本大题共6小题,每小题3分,共计18分)11.计算:_____________.12.“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动.6名志愿者参加劳动的时间(单位:小时)分别为:3,2,2,3,1,2.这组数据的中位数是_____________.13.已知实数、满足,若关于的一元二次方程的两个实数根分别为、,则_____________.第19页(共19页) 14.如图,在平面直角坐标系中,点的坐标为,点的坐标为,将点绕点顺时针旋转得到点,则点的坐标为_____________.15.如图,点是反比例函数的图象上一点,过点作轴于点,交反比例函数的图象于点,点是轴正半轴上一点.若的面积为2,则的值为_____________.16.如图,四边形中,,,于点.若,,则线段的长为_____________.三、解答题(本大题共8小题,17~21题每题8分,22~23题每题10分,24题12分,共计72分)17.(本题满分8分)先化简,再求值:,其中.18.(本题满分8分)为了引导青少年学党史、颂党恩、跟党走,某中学举行了“南献礼建党百年”党史知识竞赛活动.胡老师从全校学生的答卷中随机地抽取了部分学生的答卷进行了统计分析(卷面满分100分,且得分均为不小于60的整数)﹐并将竞赛成绩划分为四个等级:基本合格().合格()、良好()、优秀(第19页(共19页) ),制作了如下统计图(部分信息未给出):所抽取成绩的条形统计图所抽取成绩的扇形统计图根据图中提供的信息解决下列问题:(1)(3分)胡老师共抽取了____________名学生的成绩进行统计分析,扇形统计图中“基本合格”等级对应的扇形圆心角度数为____________﹐请补全条形统计图.(2)(5分)现从“优秀”等级的甲、乙、丙、丁四名学生中任选两人参加全市党史知识竞赛活动,请用画树形图的方法求甲学生被选到的概率.19.(本题满分8分)如图,在中,点、分别在边、上,且.(1)(4分)探究四边形的形状,并说明理由;(2)(4分)连接,分别交、于点、,连接交于点.若,,求的长.20.(本题满分8分)在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由地出发,途经地去往地,如图.当他由地出发时,发现他的北偏东方向有一信号发射塔.他由地沿正东方向骑行km到达地,此时发现信号塔在他的北偏东方向,然后他由地沿北偏东方向骑行12km到达地.(1)(4分)求地与信号发射塔之问的距离;(2)(4分)求地与信号发射塔之问的距离.(计算结果保留根号)21.(本题满分8分)第19页(共19页) 为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本(元)与种植面积(亩)之间满足一次函数关系,且当时,;当时,.(1)(3分)求与之间的函数关系式(不求自变量的取值范围);(2)(5分)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)22.(本题满分10分)如图,在中,,为边上一点,以为圆心,长为半径的与边相切于点,交于点.(1)(4分)求证:;(2)(6分)连接,若,,求线段的长.23.(本题满分10分)数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.猜想发现由;;;;;猜想:如果,,那么存在(当且仅当时等号成立).猜想证明∵∴①当且仅当,即时,,∴;第19页(共19页) ②当,即时,,∴.综合上述可得:若,,则成立(当日仅当时等号成立).猜想运用(3分)对于函数,当取何值时,函数的值最小?最小值是多少?变式探究(3分)对于函数,当取何值时,函数的值最小?最小值是多少?拓展应用(4分)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为().问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积最大?最大面积是多少?24.(本题满分12分)如图,直线与轴交于点,与轴交于点,点为线段的中点,点是线段上一动点(不与点、重合).(1)(3分)请直接写出点、点、点的坐标;(2)(3分)连接,在第一象限内将沿翻折得到,点的对应点为点.若,求线段的长;(3)在(2)的条件下,设抛物线的顶点为点.①(3分)若点在内部(不包括边),求的取值范围;②(3分)在平面直角坐标系内是否存在点,使最大?若存在,请直接写出点第19页(共19页) 的坐标;若不存在,请说明理由.备用图1备用图2鄂州市2021年初中毕业生学业考试数学试卷参考答案及评分标准评卷说明:1.本卷满分1:20分。2.解答题按步骤给分。3.解答题仅提供一种解题方法,考生解题方法与参考答案不同的,只要合理、正确均给满分。一、选择题(每小题3分,共30分)题号12345678910答案AABCBDCBCD二、填空题(每小题3分,共18分)11.312.213.14.15.816.三、解答题(17~21题每题8分,22~23题每题10分,24题12分,共计72分)17.解:原式当时,原式18.解:(1)40,,(补全条形图略)(2).19.解:第19页(共19页) (1)四边形为平行四边形.理由如下:∵四边形为平行四边形∴∵∴∵四边形为平行四边形∴∴∴∵∴四边形为平行四边形(2)设,∵∴,∵四边形为平行四边形∴,,∵∴∴∵∴20.解:(1)依题意知:,,过点作于点,第19页(共19页) ∵,∴∵,∴∵∴∴(2)∵,∴过点作于∵,∴∵∴,∵∴∴21.解:(1)设与之间的函数关系式,依题意得:解得:∴与之间的函数关系式为.(2)设老张明年种植该作物的总利润为元,依题意得:第19页(共19页) ∵∴当时,随的增大而增大由题意知:当时,最大,最大值为268800元即种植面积为210亩时总利润最大,最大利润268800元22.(1)证明:∵∴又∵经过半径的外端点∴切于点∴(2)解:连接,∵为的直径∴∴又∵∴∴∵∴∴又∵∴即∵∴,第19页(共19页) 又∵,∴∴设,则∴∴(舍去),即线段的长为.23.解:猜想运用:∵∴∴∴当时,此时只取即时,函数的最小值为2.变式探究:∵∴,∴∴当时,此时∴,(舍去)即时,函数的最小值为5.第19页(共19页) 拓展应用:设每间隔离房与墙平行的边为米,与墙垂直的边为米,依题意得:即∵,∴即整理得:即∴当时此时,即每间隔离房长为米,宽为米时,的最大值为.24.解:(1),,(2)过点作于∵∴∴∵点∴,第19页(共19页) ∴∵点∴∴即的长为1.(3)①∴其顶点的坐标为∴点是直线上一点∵,∴当时,又∵点在直线上∴当点在内部(不含边)时,的取值范围是.②存在点使最大.其坐标为.属菁优网所有,未经书面同意,不得复制发布日期:2021/6/229:28:04;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第19页(共19页)

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-03-06 15:12:29 页数:19
价格:¥10 大小:1.27 MB
文章作者:180****6173

推荐特供

MORE