首页

2021年山东省泰安市中考数学真题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/29

2/29

剩余27页未读,查看更多内容需下载

姓名:________座号:________准考证号:________参照秘密级管理★启用前试卷类型:A泰安市2021年初中学业水平考试数学试题本试题分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.第I卷1至3页,第Ⅱ卷4至8页,共150分.考试时间120分钟.注意事项:1.答题前请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答.2.考试结束后,监考人员将本试题和答题卡一并收回.第I卷(选择题共48分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.下列各数:,,0,,其中比小的数是A.B.C.0D.2.下列运算正确的是A.B.C.D.3.如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是(第3题)A.B.C.D.4.如图,直线,三角尺的直角顶点在直线m上,且三角尺的直角被直线m平分,若,则下列结论错误的是 (第4题)A.B.C.D.5.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为(第5题)A.7h7hB.8h7.5hC.7h7.5hD.8h8h6.如图,在中,,以点A为圆心,3为半径的圆与边相切于点D,与,分别交于点E和点G,点F是优弧上一点,,则的度数是(第6题)A.50°B.48°C.45°D.36°7.已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是A.B.C.且D.8.将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过A.B.C.D.9.如图,四边形是的内接四边形,,,,,则 的长为(第9题)A.B.C.D.210.如图,在平行四边形中,E是的中点,则下列四个结论:①;②若,,则;③若,则;④若,则与全等.其中正确结论的个数为(第10题)A.1个B.2个C.3个D.4个11.如图,为了测量某建筑物的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡的坡度.根据小颖的测量数据,计算出建筑物的高度约为(参考数据:)(第11题)A.136.6米B.86.7米C.186.7米D.86.6米 12.如图,在矩形中,,,点P在线段上运动(含B、C两点),连接,以点A为中心,将线段逆时针旋转60°到,连接,则线段的最小值为(第12题)A.B.C.D.3第II卷(非选择题共102分)二、填空题(本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分)13.2021年5月15日7时18分,天问一号着陆巡视器成功着陆于火星,我国首次火星探测任务着陆火星取得圆满成功.探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为________千米.14.《九章算术》中记载“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为________.15.如图是抛物线的部分图象,图象过点,对称轴为直线,有下列四个结论:①;②③y的最大值为3;④方程有实数根.其中正确的为________(将所有正确结论的序号都填入). (第15题)16.若为直角三角形,,以为直径画半圆如图所示,则阴影部分的面积为________.(第16题)17.如图,将矩形纸片折叠(),使落在上,为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将边折起,使点B落在上的点G处,连接,若,,则的长为________.(第17题)18.如图,点在直线上,点的横坐标为2,过点作,交x轴于点,以为边,向右作正方形,延长交x轴于点;以为边,向右作正方形,延长交x轴于点;以为边,向右作正方形,延长的交x轴于点;…;按照这个规律进行下去,则第n个正方形的边长为________(结果用含正整数n的代数式表示). (第18题)三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)(1)先化简,再求值:,其中;(2)解不等式:.20.(10分)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息,解答下列问题:(1)本次共调查了________名学生;C组所在扇形的圆心角为________度;(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?(3)若E组14名学生中有4人满分,设这4名学生为E1,E2,E3,E4,从其中抽取2名学生代表学校参加上一级比赛,请用列表或画树状图的方法求恰好抽到,的概率.(第20题)竞赛成绩统计表(成绩满分100分)竞赛成绩扇形统计图组别分数人数A组4B组C组10D组E组14合计21.(10分)如图,点P为函数与函数图象的交点,点P的纵坐标为4,轴,垂足为点B. (第21题)(1)求m的值;(2)点M是函数图象上一动点,过点M作于点D,若,求点M的坐标.22.(10分)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?23.(11分)四边形为矩形,E是延长线上的一点.图1图2(第23题)(1)若,如图1,求证:四边形为平行四边形;(2)若,点F是上的点,,于点G,如图2,求证:是等腰直角三角形.24.(13分)二次函数的图象经过点,,与y轴交于点C,点P为第二象限内抛物线上一点,连接、,交于点Q,过点P作轴于点D. (第24题)(1)求二次函数的表达式;(2)连接,当时,求直线的表达式;(3)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由.25.(14分)如图1,O为半圆的圆心,C、D为半圆上的两点,且.连接并延长,与的延长线相交于点E.图1图2图3(第25题)(1)求证:;(2)与,分别交于点F,H.①若,如图2,求证:;②若圆的半径为2,,如图3,求的值.泰安市2021年初中学业水平考试数学试题参考答案及评分标准一、选择题(本大题共12小题,每小题选对得4分,满分48分)题号123456789101112答案ADBDCBCBCDAA二、填空题(本大题共6小题,每小题填对得4分,满分24分) 13.14.15.②④16.417.18.三、解答题(本大题共7小题,满分78分)19.(10分)解:(1)原式…………………………………………………………2分………………………………………………………………………………4分…………………………………………………………………………………………5分当时,原式………………………………………………………6分(2)…………………………………………………………………………………8分…………………………………………………………………………………………9分…………………………………………………………………………………………………10分20.(10分)解:(1)50,72………………………………………………………………………………………2分(2)B组人数:(人)D组人数:(人)………………………………………………………4分该校优秀人数:(人)……………………………………………………6分(3)树状图 P(抽到,).…………………………………………………………………10分21.(10分)解:(1)∵点P纵坐标为4,∴,解得,∴,∴.……………………………………………………………………………2分(2)∵,∴,………………………………………………………………………………………3分设,则,当M点在P点右侧,∴M点的坐标为,∴,………………………………………………………………………………5分解得:,(舍去),当,,∴M点的坐标为,………………………………………………………………………………8分当M点在P点的左侧,∴M点的坐标为,∴,解得:,,均舍去.综上,M点的坐标为.……………………………………………………………………10分22.(10分)解:(1)设当前参加生产的工人有x人, 依题意得:,…………………………………………………………………4分解得:,经检验,是原方程的解,且符合题意.答:当前参加生产的工人有30人.………………………………………………………………6分(2)每人每小时的数量为(万剂).………………………………………7分设还需要生产y天才能完成任务,依题意得:,……………………………………………………8分解得:,(天)答:该厂共需要39天才能完成任务.………………………………………………………………10分23.(11分)证明:(1)∵是矩形,,,…………………………………………………………………………1分又,,…………………………………………………………………………………………2分,∴四边形是平行四边形.……………………………………………………………………4分(2),∴矩形是正方形,,,…………………………………………………………………………5分,………………………………………………………………………………………6分又,,,…………………………………………………………………………………………7分又,,………………………………………………………………………………8分,,…………………………………………………………………9分, 是等腰直角三角形.……………………………………………………………………11分24.(13分)解:(1)由题意可得:…………………………………………………………………………2分解得:∴二次函数的表达式为……………………………………………………3分(2)设与y轴交于点E,∵轴,,,,,…………………………………………………………………………………5分,设,则,,在中,由勾股定理得,解得,,…………………………………………………………………………………………7分设所在直线表达式为解得 ∴直线的表达式为.……………………………………………………………8分(3)设与交于点N.过B作y轴的平行线与相交于点M.由A、C两点坐标分别为,可得所在直线表达式为………………………………………………………………9分∴M点坐标为,由,可得………………………………………………………………………………11分设,则………………………………12分∴当时,有最大值,此时P点坐标为…………………………………………………………………………………13分25.(14分)证明:(1)连接,∵为直径∴………………………………………………………………………………2分∵∴ ∴…………………………………………………………………………………4分∴.…………………………………………………………………………………………5分(2)①∵∴又∵∴……………………………………………………………………………………6分又∵∴∴……………………………………………………………………………………8分∴∴∴………………………………………………………………………………11分②连接交于G.设,则…………………………………………………………………………11分∵∴又∵∴,……………………………………………………………………………12分在和中 ∴即……………………………………………………………………………………13分∵∴是的中位线∴∴.……………………………………………………………………………………14分 鄂州市2021年初中毕业生学业考试数学试题学校:_______________考生姓名:_______________准考证号:注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试题卷上无效。4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。答在试题卷上无效。5.考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。6.考生不准使用计算器。一、选择题(本大题共10小题,每小题3分,共计30分)1.实数6的相反数等于A.B.6C.D.2.下列运算正确的是A.B.C.D.3.“国士无双”是人民对“杂交水稻之父”袁隆平院士的赞誉.下列四个汉字中是轴对称图形的是A.B.C.D.4.下列四个几何体中,主视图是三角形的是A.B.C.D.5.已知锐角,如图,按下列步骤作图:①在边取一点,以为圆心,长为半径画,交于点,连接.②以为圆心,长为半径画,交于点,连接.则的度数为 A.B.C.D.6.已知为实数﹐规定运算:,,,,……,.按上述方法计算:当时,的值等于A.B.C.D.7.数形结合是解决数学问题常用的思想方法.如图,直线与直线相交于点.根据图象可知,关于的不等式的解集是A.B.C.D.8.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心为圆心的圆,如图2.已知圆心在水面上方,且被水面截得的弦长为6米,半径长为4米.若点为运行轨道的最低点,则点到弦所在直线的距离是图1图2A.1米B.米C.2米D.米9.二次函数的图象的一部分如图所示.已知图象经过点,其对称轴为直线.下列结论:①;②;③;④若抛物线经过点,则关于的一元二次方程的两根分别为,5.上述结论中正确结论的个数为 A.1个B.2个C.3个D.4个10.如图,中,,,.点为内一点,且满足.当的长度最小时,的面积是A.3B.C.D.二、填空题(本大题共6小题,每小题3分,共计18分)11.计算:_____________.12.“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动.6名志愿者参加劳动的时间(单位:小时)分别为:3,2,2,3,1,2.这组数据的中位数是_____________.13.已知实数、满足,若关于的一元二次方程的两个实数根分别为、,则_____________.14.如图,在平面直角坐标系中,点的坐标为,点的坐标为,将点绕点顺时针旋转得到点,则点的坐标为_____________.15.如图,点是反比例函数的图象上一点,过点作轴于点,交反比例函数 的图象于点,点是轴正半轴上一点.若的面积为2,则的值为_____________.16.如图,四边形中,,,于点.若,,则线段的长为_____________.三、解答题(本大题共8小题,17~21题每题8分,22~23题每题10分,24题12分,共计72分)17.(本题满分8分)先化简,再求值:,其中.18.(本题满分8分)为了引导青少年学党史、颂党恩、跟党走,某中学举行了“南献礼建党百年”党史知识竞赛活动.胡老师从全校学生的答卷中随机地抽取了部分学生的答卷进行了统计分析(卷面满分100分,且得分均为不小于60的整数)﹐并将竞赛成绩划分为四个等级:基本合格().合格()、良好()、优秀(),制作了如下统计图(部分信息未给出):所抽取成绩的条形统计图所抽取成绩的扇形统计图根据图中提供的信息解决下列问题:(1)(3分)胡老师共抽取了____________名学生的成绩进行统计分析,扇形统计图中“基本合格”等级对应的扇形圆心角度数为____________﹐请补全条形统计图.(2)(5分)现从“优秀”等级的甲、乙、丙、丁四名学生中任选两人参加全市党史知识竞赛活动,请用画树形图的方法求甲学生被选到的概率.19.(本题满分8分) 如图,在中,点、分别在边、上,且.(1)(4分)探究四边形的形状,并说明理由;(2)(4分)连接,分别交、于点、,连接交于点.若,,求的长.20.(本题满分8分)在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由地出发,途经地去往地,如图.当他由地出发时,发现他的北偏东方向有一信号发射塔.他由地沿正东方向骑行km到达地,此时发现信号塔在他的北偏东方向,然后他由地沿北偏东方向骑行12km到达地.(1)(4分)求地与信号发射塔之问的距离;(2)(4分)求地与信号发射塔之问的距离.(计算结果保留根号)21.(本题满分8分)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本(元)与种植面积(亩)之间满足一次函数关系,且当时,;当时,.(1)(3分)求与之间的函数关系式(不求自变量的取值范围);(2)(5分)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)22.(本题满分10分)如图,在中,,为边上一点,以为圆心,长为半径的与边相切于点,交于点. (1)(4分)求证:;(2)(6分)连接,若,,求线段的长.23.(本题满分10分)数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个正数之积的算术平方根的两倍之间的关系进行了探究,请阅读以下探究过程并解决问题.猜想发现由;;;;;猜想:如果,,那么存在(当且仅当时等号成立).猜想证明∵∴①当且仅当,即时,,∴;②当,即时,,∴.综合上述可得:若,,则成立(当日仅当时等号成立).猜想运用(3分)对于函数,当取何值时,函数的值最小?最小值是多少?变式探究(3分)对于函数,当取何值时,函数的值最小?最小值是多少?拓展应用(4分)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为().问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积最大?最大面积是多少? 24.(本题满分12分)如图,直线与轴交于点,与轴交于点,点为线段的中点,点是线段上一动点(不与点、重合).(1)(3分)请直接写出点、点、点的坐标;(2)(3分)连接,在第一象限内将沿翻折得到,点的对应点为点.若,求线段的长;(3)在(2)的条件下,设抛物线的顶点为点.①(3分)若点在内部(不包括边),求的取值范围;②(3分)在平面直角坐标系内是否存在点,使最大?若存在,请直接写出点的坐标;若不存在,请说明理由.备用图1备用图2鄂州市2021年初中毕业生学业考试数学试卷参考答案及评分标准评卷说明:1.本卷满分1:20分。 2.解答题按步骤给分。3.解答题仅提供一种解题方法,考生解题方法与参考答案不同的,只要合理、正确均给满分。一、选择题(每小题3分,共30分)题号12345678910答案AABCBDCBCD二、填空题(每小题3分,共18分)11.312.213.14.15.816.三、解答题(17~21题每题8分,22~23题每题10分,24题12分,共计72分)17.解:原式当时,原式18.解:(1)40,,(补全条形图略)(2).19.解:(1)四边形为平行四边形.理由如下:∵四边形为平行四边形∴∵∴∵四边形为平行四边形∴∴ ∴∵∴四边形为平行四边形(2)设,∵∴,∵四边形为平行四边形∴,,∵∴∴∵∴20.解:(1)依题意知:,,过点作于点,∵,∴∵,∴∵∴∴(2)∵,∴过点作于∵,∴ ∵∴,∵∴∴21.解:(1)设与之间的函数关系式,依题意得:解得:∴与之间的函数关系式为.(2)设老张明年种植该作物的总利润为元,依题意得:∵∴当时,随的增大而增大由题意知:当时,最大,最大值为268800元即种植面积为210亩时总利润最大,最大利润268800元22.(1)证明:∵∴又∵经过半径的外端点∴切于点 ∴(2)解:连接,∵为的直径∴∴又∵∴∴∵∴∴又∵∴即∵∴,又∵,∴∴设,则∴∴(舍去),即线段的长为.23.解:猜想运用:∵∴∴∴当时, 此时只取即时,函数的最小值为2.变式探究:∵∴,∴∴当时,此时∴,(舍去)即时,函数的最小值为5.拓展应用:设每间隔离房与墙平行的边为米,与墙垂直的边为米,依题意得:即∵,∴即整理得:即∴当时此时,即每间隔离房长为米,宽为米时,的最大值为.24.解:(1),, (2)过点作于∵∴∴∵点∴,∴∵点∴∴即的长为1.(3)①∴其顶点的坐标为∴点是直线上一点∵, ∴当时,又∵点在直线上∴当点在内部(不含边)时,的取值范围是.②存在点使最大.其坐标为.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-03-06 15:13:07 页数:29
价格:¥10 大小:1.61 MB
文章作者:180****6173

推荐特供

MORE