首页

2021年山东省日照市中考数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/20

2/20

剩余18页未读,查看更多内容需下载

2021年山东省日照市中考数学试卷一、选择题:本题共12个小题,每小题3分,满分36分。在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上。1.(3分)在下列四个实数中,最大的实数是(  )A.﹣2B.C.D.02.(3分)在平面直角坐标系中,把点P(﹣3,2)向右平移两个单位后,得到对应点的坐标是(  )A.(﹣5,2)B.(﹣1,4)C.(﹣3,4)D.(﹣1,2)3.(3分)实验测得,某种新型冠状病毒的直径是120纳米(1纳米=10﹣9米),120纳米用科学记数法可表示为(  )A.12×10﹣6米B.1.2×10﹣7米C.1.2×10﹣8米D.120×10﹣9米4.(3分)袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为(  )A.甲B.乙C.甲、乙均可D.无法确定5.(3分)下列运算正确的是(  )A.x2+x2=x4B.(xy2)2=xy4C.y6÷y2=y3D.﹣(x﹣y)2=﹣x2+2xy﹣y26.(3分)一张水平放置的桌子上摆放着若干个碟子,其三视图如图所示,则这张桌子上共有碟子的个数为(  )A.10B.12C.14D.187.(3分)若不等式组的解集是x>3,则m的取值范围是(  )A.m>3B.m≥3C.m≤3D.m<38.(3分)下列命题:①的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;②天气预报说明天的降水概率是95%,则明天一定会下雨;④若一个多边形的各内角都等于108°,则它是正五边形,其中真命题的个数是(  )A.0B.1C.2D.39.(3分)如图,平面图形ABD由直角边长为1的等腰直角△AOD和扇形BOD组成,点P在线段AB上,PQ⊥AB,且PQ交AD或交于点Q.设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y关于x的大致图象是(  )第20页(共20页) A.B.C.D.10.(3分)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是(  )A.(10+20)mB.(10+10)mC.20mD.40m11.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,其图象如图所示.下列结论:①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(﹣1,m),则关于x的方程ax2+bx+c=m﹣1无实数根.其中正确结论的个数是(  )A.4B.3C.2D.112.(3分)数学上有很多著名的猜想,“奇偶归一猜想”就是其中之一,它至今未被证明,但研究发现,对于任意一个小于7×1011第20页(共20页) 的正整数,如果是奇数,则乘3加1;如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终总能够得到1.对任意正整数m,按照上述规则,恰好实施5次运算结果为1的m所有可能取值的个数为(  )A.8B.6C.4D.3二、填空题:本题共4个小题,每小题4分,满分16分。不需写出解题过程,请将答案直接写在答题卡相应位置上。13.(4分)若分式有意义,则实数x的取值范围为  .14.(4分)关于x的方程x2+bx+2a=0(a、b为实数且a≠0),a恰好是该方程的根,则a+b的值为  .15.(4分)如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为  时,△ABP与△PCQ全等.16.(4分)如图,在平面直角坐标系xOy中,正方形OABC的边OC、OA分别在x轴和y轴上,OA=10,点D是边AB上靠近点A的三等分点,将△OAD沿直线OD折叠后得到△OA′D,若反比例函数y=(k≠0)的图象经过A′点,则k的值为  .三、解答题:本题共6个小题,满分68分。请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤。17.(10分)(1)若单项式xm﹣ny14与单项式﹣x3y3m﹣8n是一多项式中的同类项,求m、n的值;(2)先化简,再求值:(+)÷,其中x=﹣1.18.(10分)为庆祝中国共产党建党100周年,某校加强了学生对党史知识的学习,并组织学生参加《党史知识》测试(满分100分).为了解学生对党史知识的掌握程度,从七、八年级中各随机抽取10名学生的测试成绩,进行统计、分析,过程如下:收集数据:七年级:8688959010095959993100八年级:100989889879895909089整理数据:成绩x(分)年级85<x≤9090<x≤9595<x≤100第20页(共20页) 七年级343八年级5ab分析数据:统计量年级平均数中位数众数七年级94.195d八年级93.4c98应用数据:(1)填空:a=  ,b=  ,c=  ,d=  ;(2)若八年级共有200人参与答卷,请估计八年级测试成绩大于95分的人数;(3)从测试成绩优秀的学生中选出5名语言表达能力较强的学生,其中八年级3名,七年级2名.现从这5名学生中随机抽取2名到当地社区担任党史宣讲员.请用画树状图或列表的方法,求恰好抽到同年级学生的概率.19.(10分)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?20.(10分)如图,▱OABC的对角线相交于点D,⊙O经过A、D两点,与BO的延长线相交于点E,点F为上一点,且=.连接AE、DF相交于点G,若AG=3,EG=6.(1)求▱OABC对角线AC的长;(2)求证:▱OABC为矩形.21.(14分)问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①=  ;②直线AE与DF所夹锐角的度数为  第20页(共20页) .(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为  .22.(14分)已知:抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)如图1,点P为直线BC上方抛物线上任意一点,连PC、PB、PO,PO交直线BC于点E,设=k,求当k取最大值时点P的坐标,并求此时k的值.(3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.①求△BDQ的周长及tan∠BDQ的值;②点M是y轴负半轴上的点,且满足tan∠BMQ=(为大于0的常数),求点M的坐标.第20页(共20页) 2021年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本题共12个小题,每小题3分,满分36分。在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上。1.(3分)在下列四个实数中,最大的实数是(  )A.﹣2B.C.D.0【解答】解:∵正数大于0,负数小于0,正数大于负数,∴>>0>﹣2,故选:B.2.(3分)在平面直角坐标系中,把点P(﹣3,2)向右平移两个单位后,得到对应点的坐标是(  )A.(﹣5,2)B.(﹣1,4)C.(﹣3,4)D.(﹣1,2)【解答】解:根据题意,从点P到点P′,点P′的纵坐标不变,横坐标是﹣3+2=﹣1,故点P′的坐标是(﹣1,2).故选:D.3.(3分)实验测得,某种新型冠状病毒的直径是120纳米(1纳米=10﹣9米),120纳米用科学记数法可表示为(  )A.12×10﹣6米B.1.2×10﹣7米C.1.2×10﹣8米D.120×10﹣9米【解答】解:120纳米=120×10﹣9米=1.2×10﹣7米.故选:B.4.(3分)袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为(  )A.甲B.乙C.甲、乙均可D.无法确定【解答】解:∵S甲2=186.9,S乙2=325.3,∴S甲2<S乙2,∴为保证产量稳定,适合推广的品种为甲,故选:A.5.(3分)下列运算正确的是(  )A.x2+x2=x4B.(xy2)2=xy4C.y6÷y2=y3D.﹣(x﹣y)2=﹣x2+2xy﹣y2【解答】解:A.由合并同类项的法则,得x2+x2=2x2,故A不符合题意.B.由积的乘方以及幂的乘方,得(xy2)2=x2y4,故B不符合题意.C.由同底数幂的除法,得y6÷y2=y4,故C不符合题意.D.由完全平方公式,得﹣(x﹣y)2=﹣x2﹣y2+2xy,故D符合题意.故选:D.6.(3分)一张水平放置的桌子上摆放着若干个碟子,其三视图如图所示,则这张桌子上共有碟子的个数为(  )第20页(共20页) A.10B.12C.14D.18【解答】解:从俯视图可知该桌子共摆放着三列碟子.主视图可知左侧碟子有6个,右侧有2个,而左视图可知左侧有4个,右侧与主视图的左侧碟子相同,共计12个,故选:B.7.(3分)若不等式组的解集是x>3,则m的取值范围是(  )A.m>3B.m≥3C.m≤3D.m<3【解答】解:解不等式x+6<4x﹣3,得:x>3,∵x>m且不等式组的解集为x>3,∴m≤3,故选:C.8.(3分)下列命题:①的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;②天气预报说明天的降水概率是95%,则明天一定会下雨;④若一个多边形的各内角都等于108°,则它是正五边形,其中真命题的个数是(  )A.0B.1C.2D.3【解答】解:①的算术平方根是,故原命题错误,是假命题,不符合题意;②菱形既是中心对称图形又是轴对称图形,正确,是真命题,符合题意;②天气预报说明天的降水概率是95%,则明天下雨可能性很大,但不确定是否一定下雨,故原命题错误,是假命题,不符合题意;④若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故原命题错误,是假命题,不符合题意;真命题有1个,故选:B.9.(3分)如图,平面图形ABD由直角边长为1的等腰直角△AOD和扇形BOD组成,点P在线段AB上,PQ⊥AB,且PQ交AD或交于点Q.设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y关于x的大致图象是(  )第20页(共20页) A.B.C.D.【解答】解:当Q在AD上时,即点P在AO上时,有0<x≤1,此时阴影部分为等腰直角三角形,∴y=,该函数是二次函数,且开口向上,排除B,C选项;当点Q在弧BD上时,补全图形如图所示,阴影部分的面积等于等腰直角△AOD的面积加上扇形BOD的面积,再减去平面图形PBQ的面积即减去弓形QBF的面积,设∠QOB=θ,则∠QOF=2θ,∴,S弓形QBF=﹣S△QOF,当θ°=45°时,AP=x=1+≈1.7,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.15,当θ°=30°时,AP=x=1.86,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.45,在A,D选项中分别找到这两个特殊值,对比发现,选项D符合题意.故选:D.10.(3分)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是(  )第20页(共20页) A.(10+20)mB.(10+10)mC.20mD.40m【解答】解:过D作DF⊥BC于F,DH⊥AB于H,∴DH=BF,BH=DF,∵斜坡的斜面坡度i=1:,∴=1:,设DF=xm,CF=xm,∴CD==2x=20(m),∴x=10,∴BH=DF=10m,CF=10m,∴DH=BF=(10+30)m,∵∠ADH=30°,∴AH=DH=×(10+30)=(10+10)(m),∴AB=AH+BH=(20+10)m,故选:A.11.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,其图象如图所示.下列结论:①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(﹣1,m),则关于x的方程ax2+bx+c=m﹣1无实数根.其中正确结论的个数是(  )第20页(共20页) A.4B.3C.2D.1【解答】解:①∵抛物线图象开口向上,∴a>0,∵对称轴在直线y轴左侧,∴a,b同号,b>0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc<0,故①正确.②(4a+c)2﹣(2b)2=(4a+c+2b)(4a+c﹣2b),当x=2时ax2+bx+c=4a+c+2b,由图象可得4a+c+2b>0,当x=﹣2时,ax2+bx+c=4a+c﹣2b,由图象可得4a+c﹣2b<0,∴(4a+c)2﹣(2b)2<0,即(4a+c)2<(2b)2,故②正确.③|x1+1|=|x1﹣(﹣1)|,|x2+1|=|x2﹣(﹣1)|,∵|x1+1|>|x2+1|,∴点(x1,y1)到对称轴的距离大于点(x2,y2)到对称轴的距离,∴y1>y2|,故③错误.④∵抛物线的顶点坐标为(﹣1,m),∴y≥m,∴ax2+bx+c≥m,∴ax2+bx+c=m﹣1无实数根.故④正确,综上所述,①②④正确,故选:B.12.(3分)数学上有很多著名的猜想,“奇偶归一猜想”就是其中之一,它至今未被证明,但研究发现,对于任意一个小于7×1011的正整数,如果是奇数,则乘3加1;如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终总能够得到1.对任意正整数m,按照上述规则,恰好实施5次运算结果为1的m所有可能取值的个数为(  )A.8B.6C.4D.3【解答】解:如果实施5次运算结果为1,则变换中的第6项一定是1,则变换中的第5项一定是2,则变换中的第4项一定是4,则变换中的第3项可能是1,也可能是8.则变换中的第2项可能是2,也可能是16.当变换中的第2项是2时,第1项是4;当变换中的第2项是16时,第1项是32或5,则m的所有可能取值为4或32或5,一共3个,故选:D.第20页(共20页) 二、填空题:本题共4个小题,每小题4分,满分16分。不需写出解题过程,请将答案直接写在答题卡相应位置上。13.(4分)若分式有意义,则实数x的取值范围为 x≥﹣1且x≠0 .【解答】解:要使分式有意义,必须x+1≥0且x≠0,解得:x≥﹣1且x≠0,故答案为:x≥﹣1且x≠0.14.(4分)关于x的方程x2+bx+2a=0(a、b为实数且a≠0),a恰好是该方程的根,则a+b的值为 ﹣2 .【解答】解:由题意可得x=a(a≠0),把x=a代入原方程可得:a2+ab+2a=0,等式左右两边同时除以a,可得:a+b+2=0,即a+b=﹣2,故答案为:﹣2.15.(4分)如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为 2或 时,△ABP与△PCQ全等.【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,综上所述,当v=2或时,△ABP与△PQC全等,故答案为:2或.16.(4分)如图,在平面直角坐标系xOy中,正方形OABC的边OC、OA分别在x轴和y轴上,OA=10,点D是边AB上靠近点A的三等分点,将△OAD沿直线OD折叠后得到△OA′D,若反比例函数y=(k≠0)的图象经过A′点,则k的值为 48. .第20页(共20页) 【解答】解:过A′作EF⊥OC于F,交AB于E,∵∠OA′D=90°,∴∠OA′F+∠DA′E=90°,∵∠OA′F+∠A′OF=90°,∴∠DA′E=∠A′OF,∵∠A′FO=∠DEA′,∴△A′OF∽△DA′E,∴==,设A′(m,n),∴OF=m,A′F=n,∵正方形OABC的边OC、OA分别在x轴和y轴上,OA=10,点D是边AB上靠近点A的三等分点,∴DE=m﹣,A′E=10﹣n,∴==3,解得m=6,n=8,∴A′(6,8),∵反比例函数y=(k≠0)的图象经过A′点,∴k=6×8=48,故答案为48.三、解答题:本题共6个小题,满分68分。请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤。17.(10分)(1)若单项式xm﹣ny14与单项式﹣x3y3m﹣8n是一多项式中的同类项,求m、n的值;第20页(共20页) (2)先化简,再求值:(+)÷,其中x=﹣1.【解答】解:(1)由题意可得,②﹣①×3,可得:﹣5n=5,解得:n=﹣1,把n=﹣1代入①,可得:m﹣(﹣1)=3,解得:m=2,∴m的值为2,n的值为﹣1;(2)原式=[]•(x+1)(x﹣1)=•(x+1)(x﹣1)=x2+1,当x=﹣1时,原式=(﹣1)2+1=2﹣2+1+1=4﹣2.18.(10分)为庆祝中国共产党建党100周年,某校加强了学生对党史知识的学习,并组织学生参加《党史知识》测试(满分100分).为了解学生对党史知识的掌握程度,从七、八年级中各随机抽取10名学生的测试成绩,进行统计、分析,过程如下:收集数据:七年级:8688959010095959993100八年级:100989889879895909089整理数据:成绩x(分)年级85<x≤9090<x≤9595<x≤100七年级343八年级5ab分析数据:统计量年级平均数中位数众数七年级94.195d八年级93.4c98应用数据:(1)填空:a= 1 ,b= 4 ,c= 92.5 ,d= 95 ;(2)若八年级共有200人参与答卷,请估计八年级测试成绩大于95分的人数;(3)从测试成绩优秀的学生中选出5名语言表达能力较强的学生,其中八年级3名,七年级2名.现从这5名学生中随机抽取2名到当地社区担任党史宣讲员.请用画树状图或列表的方法,求恰好抽到同年级学生的概率.【解答】解:(1)a=1,b=4,八年级成绩按由小到大排列为:87,89,89,90,90,95,98,98,98,100,所以八年级成绩的中位数c==92.5,七年级成绩中95出现的次数最多,则d=95;故答案为1,4,92.5,95;(2)200×=80,估计八年级测试成绩大于95分的人数为80人;(3)画树状图为:第20页(共20页) 共有20种等可能的结果,其中两同学为同年级的结果数为8,所以抽到同年级学生的概率==.19.(10分)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?【解答】解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(1,110)、(3,130)代入一次函数表达式得:,解得:,故函数的表达式为:y=10x+100;(2)由题意得:(10x+100)×(55﹣x﹣35)=1760,整理,得x2﹣10x﹣24=0.解得x1=12,x2=﹣2(舍去).所以55﹣x=43.答:这种消毒液每桶实际售价43元.20.(10分)如图,▱OABC的对角线相交于点D,⊙O经过A、D两点,与BO的延长线相交于点E,点F为上一点,且=.连接AE、DF相交于点G,若AG=3,EG=6.(1)求▱OABC对角线AC的长;(2)求证:▱OABC为矩形.第20页(共20页) 【解答】解:∵DE是直径,∴∠EAD=90°,∵=∴∠ADF=∠AFD=∠AED,又∵∠DAE=∠GAD=90°∴△ADE∽△AGD∴∴AD2=AG×AE=3×9=27,∴AD=3,∴AC=2AD=6.(2)DE==6,∵▱OABC是平行四边形∴OB=2OD=DE=6,∴▱OABC为矩形.21.(14分)问题背景:如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.实验探究:(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①=  ;②直线AE与DF所夹锐角的度数为 30° .(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为 或 .第20页(共20页) 【解答】解:(1)如图1,∵∠ABD=30°,∠DAB=90°,EF⊥BA,∴cos∠ABD==,如图2,设AB与DF交于点O,AE与DF交于点H,∵△BEF绕点B按逆时针方向旋转90°,∴∠DBF=∠ABE=90°,∴△FBD∽△EBA,∴=,∠BDF=∠BAE,又∵∠DOB=∠AOF,∴∠DBA=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°,故答案为:,30°;(2)结论仍然成立,理由如下:如图3,设AE与BD交于点O,AE与DF交于点H,∵将△BEF绕点B按逆时针方向旋转,∴∠ABE=∠DBF,第20页(共20页) 又∵=,∴△ABE∽△DBF,∴=,∠BDF=∠BAE,又∵∠DOH=∠AOB,∴∠ABD=∠AHD=30°,∴直线AE与DF所夹锐角的度数为30°.拓展延伸:如图4,当点E在AB的上方时,过点D作DG⊥AE于G,∵AB=2,∠ABD=30°,点E是边AB的中点,∠DAB=90°,∴BE=,AD=2,DB=4,∵∠EBF=30°,EF⊥BE,∴EF=1,∵D、E、F三点共线,∴∠DEB=∠BEF=90°,∴DE===,∵∠DEA=30°,∴DG=DE=,由(2)可得:=,∴,∴AE=,∴△ADE的面积=×AE×DG=××=;如图5,当点E在AB的下方时,过点D作DG⊥AE,交EA的延长线于G,同理可求:△ADE的面积=×AE×DG=××=;故答案为:或.22.(14分)已知:抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)如图1,点P为直线BC上方抛物线上任意一点,连PC、PB、PO,PO交直线BC第20页(共20页) 于点E,设=k,求当k取最大值时点P的坐标,并求此时k的值.(3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.①求△BDQ的周长及tan∠BDQ的值;②点M是y轴负半轴上的点,且满足tan∠BMQ=(为大于0的常数),求点M的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3),∴设y=a(x+1)(x﹣3),将C(0,3)代入,得a(0+1)(0﹣3)=3,解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,∴抛物线的解析式为y=﹣x2+2x+3;(2)如图1,过点P作PH∥y轴交直线BC于点H,∴△PEH∽△OEC,∴=,∵=k,OC=3,∴k=PH,设直线BC的解析式为y=kx+n,∵B(3,0),C(0,3),∴,解得:,∴直线BC的解析式为y=﹣x+3,设点P(t,﹣t2+2t+3),则H(t,﹣t+3),∴PH=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴k=(﹣t2+3t)=(t﹣)2+,∵<0,∴当t=时,k取得最大值,此时,P(,);(3)①如图2,过点Q作QT⊥BD于点T,则∠BTQ=∠DTQ=90°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为直线x=1,第20页(共20页) ∴Q(1,0),∴OQ=1,BQ=OB﹣OQ=3﹣1=2,∵点C关于x轴的对称点为点D,∴D(0,﹣3),∵B(3,0),∴OB=OD=3,∵∠BOD=90°,∴DQ===,BD===3,∴△BDQ的周长=BQ+DQ+BD=2++3;在Rt△OBD中,∵∠BOD=90°,OB=OD,∴∠DBO=∠BDO=45°,∵∠BTQ=90°,∴△BQT是等腰直角三角形,∴QT=BT=BQ•cos∠DBO=2•cos45°=,∴DT=BD﹣BT=3﹣=2,∴tan∠BDQ===;②设M(0,﹣m),则OM=m,BM===,MQ==,∵tan∠BMQ=,∴=,∴MT=t•QT,∵QT2+MT2=MQ2,∴QT2+(t•QT)2=()2,∴QT=,MT=,∵cos∠QBT=cos∠MBO,∴=,即=,∴BT=,∵BT+MT=BM,∴+=,整理得,(m2+3)2=4t2m2,∵t>0,m>0,∴m2+3=2tm,即m2﹣2tm+3=0,当Δ=(﹣2t)2﹣4×1×3=4t2﹣12≥0,即t≥时,m==t±,∴M(0,﹣t)或(0,﹣﹣t).第20页(共20页) 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/9/147:32:51;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第20页(共20页)

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-02-26 14:12:03 页数:20
价格:¥5 大小:611.55 KB
文章作者:180****8757

推荐特供

MORE