首页

北师大版九下数学3.6第2课时切线的判定及三角形的内切圆1教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

3.6直线和圆的位置关系第2课时切线的判定及三角形的内切圆1.掌握切线的判定定理,并会运用它进行切线的证明;(重点)2.能灵活选用切线的三种判定方法判定一条直线是圆的切线;(难点)3.掌握画三角形内切圆的方法和三角形内心的概念.(重点)                   一、情境导入下雨天,当你转动雨伞,你会发现雨伞上的水珠顺着伞面的边缘飞出.仔细观察一下,水珠是顺着什么样的方向飞出的?这就是我们所要研究的直线与圆相切的情况.二、合作探究探究点一:切线的判定【类型一】已知直线过圆上的某一个点,证明圆的切线如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,求证:CD是⊙O的切线.解析:要证明CD是⊙O的切线,即证明OC⊥CD.连接OC,由AC=CD,∠D=30°,则∠A=∠D=30°,得到∠COD=60°,所以∠OCD=90°.证明:连接OC,如图,∵AC=CD,∠D=30°,∴∠A=∠D=30°.∵OA=OC,∴∠ACO=∠A=30°,∴∠COD=60°,∴∠OCD=90°,即OC⊥CD.∴CD是⊙O的切线.方法总结:一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】直线与圆的公共点没有确定时,证明圆的切线 如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.解析:连接OM,过点O作ON⊥CD于点N,用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON即可.证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC.又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.方法总结:如果直线与圆的公共点没有确定,则应过圆心作直线的垂线,证明圆心到这条直线的距离等于半径.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型三】切线的性质和判定的综合应用如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若AD=2,AE=6,求EC的长.解析:(1)取BD的中点O,连接OE,如图,由∠BED=90°,可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,可得结论;(2)设⊙O的半径为r,根据勾股定理和平行线分线段成比例定理,可求答案.(1)证明:取BD的中点O,连接OE,如图所示,∵DE⊥EB,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心.∵BE平分∠ABC,∴∠CBE=∠OBE.∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;(2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r.在Rt△AEO中,有AE2+OE2=AO2,即62+r2=(r+2)2,解得r=2.∵OE∥BC,∴=,即=,∴CE=3.方法总结:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.变式训练:见《学练优》本课时练习“课后巩固提升”第6题探究点二:三角形的内切圆【类型一】利用三角形的内心求角的度数如图,⊙O内切于△ABC,切点D、E、F分别在BC、AB、AC上.已知∠B=50°,∠C=60°,连接OE,OF,DE,DF,那么∠EDF等于(  ) A.40°B.55°C.65°D.70°解析:∵∠A+∠B+∠C=180°,∠B=50°,∠C=60°,∴∠A=70°.∵⊙O内切于△ABC,切点分别为D、E、F,∴∠OEA=∠OFA=90°,∴∠EOF=360°-∠A-∠OEA-∠OFA=110°,∴∠EDF=∠EOF=55°.故选B.方法总结:解决本题的关键是理解三角形内心的概念,求出∠EOF的度数.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型二】求三角形内切圆半径如图,Rt△ABC中,∠C=90°,AC=6,CB=8,则△ABC的内切圆半径r为(  )A.1B.2C.1.5D.2.5解析:∵∠C=90°,AC=6,CB=8,∴AB==10,∴△ABC的内切圆半径r==2.故选B.方法总结:记住直角边为a、b,斜边为c的三角形的内切圆半径为,可以大大简化计算.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】三角形内心的综合应用如图①,I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.(1)BE与IE相等吗?请说明理由.(2)如图②,连接BI,CI,CE,若∠BED=∠CED=60°,猜想四边形BECI是何种特殊四边形,并证明你的猜想.解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE; (2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=∠ABC=30°,∠ICD=∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.三、板书设计切线的判定及三角形的内切圆1.切线的判定方法2.三角形的内切圆和内心的概念本节课多处设计了观察探究、分组讨论等学生活动内容,如动手操作“切线的判定定理的发现过程”,以及讲解例题时学生的参与,课堂练习的设计都体现了以教师为主导、学生为主体的教学原则.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2021-12-11 09:06:40 页数:4
价格:¥3 大小:746.37 KB
文章作者:随遇而安

推荐特供

MORE