首页

人教版九下数学28.2.1解直角三角形教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

28.2.1解直角三角形                   1.理解解直角三角形的意义和条件;(重点)2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)一、情境导入世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B,塔身中心线与垂直中心线夹角为∠A,过点B向垂直中心线引垂线,垂足为点C.在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,求∠A的度数.在上述的Rt△ABC中,你还能求其他未知的边和角吗?二、合作探究探究点一:解直角三角形【类型一】利用解直角三角形求边或角已知在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a,b,c,按下列条件解直角三角形.(1)若a=36,∠B=30°,求∠A的度数和边b、c的长;(2)若a=6,b=6,求∠A、∠B的度数和边c的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.解:(1)在Rt△ABC中,∵∠B=30°,a=36,∴∠A=90°-∠B=60°,∵cosB=,即c===24,∴b=sinB·c=×24=12;(2)在Rt△ABC中,∵a=6,b=6,∴tanA==,∴∠A=30°,∴∠B=60°,∴c=2a=12.方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】构造直角三角形解决长度问题一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,试求CD的长. 解析:过点B作BM⊥FD于点M,求出BM与CM的长度,然后在△EFD中可求出∠EDF=60°,利用解直角三角形解答即可.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12.∵AB∥CF,∴BM=sin45°BC=12×=12,CM=BM=12.在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD==4,∴CD=CM-MD=12-4.方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型三】运用解直角三角形解决面积问题如图,在△ABC中,已知∠C=90°,sinA=,D为边AC上一点,∠BDC=45°,DC=6.求△ABC的面积.解析:首先利用正弦的定义设BC=3k,AB=7k,利用BC=CD=3k=6,求得k值,从而求得AB的长,然后利用勾股定理求得AC的长,再进一步求解.解:∵∠C=90°,∴在Rt△ABC中,sinA==,设BC=3k,则AB=7k(k>0),在Rt△BCD中,∵∠BCD=90°,∴∠BDC=45°,∴∠CBD=∠BDC=45°,∴BC=CD=3k=6,∴k=2,∴AB=14.在Rt△ABC中,AC===4,∴S△ABC=AC·BC=×4×6=12.所以△ABC的面积是12.方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点二:解直角三角形的综合【类型一】解直角三角形与等腰三角形的综合已知等腰三角形的底边长为,周长为2+,求底角的度数.解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.解:如图,在△ABC中,AB=AC,BC=,∵周长为2+,∴AB=AC=1.过A作AD⊥BC 于点D,则BD=,在Rt△ABD中,cos∠ABD==,∴∠ABD=45°,即等腰三角形的底角为45°.方法总结:求角的度数时,可考虑利用特殊角的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型二】解直角三角形与圆的综合已知:如图,Rt△AOB中,∠O=90°,以OA为半径作⊙O,BC切⊙O于点C,连接AC交OB于点P.(1)求证:BP=BC;(2)若sin∠PAO=,且PC=7,求⊙O的半径.解析:(1)连接OC,由切线的性质,可得∠OCB=90°,由OA=OC,得∠OCA=∠OAC,再由∠AOB=90°,可得出所要求证的结论;(2)延长AO交⊙O于点E,连接CE,在Rt△AOP和Rt△ACE中,根据三角函数和勾股定理,列方程解答.解:(1)连接OC,∵BC是⊙O的切线,∴∠OCB=90°,∴∠OCA+∠BCA=90°.∵OA=OC,∴∠OCA=∠OAC,∴∠OAC+∠BCA=90°,∵∠BOA=90°,∴∠OAC+∠APO=90°,∵∠APO=∠BPC,∴∠BPC=∠BCA,∴BC=BP;(2)延长AO交⊙O于点E,连接CE,在Rt△AOP中,∵sin∠PAO=,设OP=x,AP=3x,∴AO=2x.∵AO=OE,∴OE=2x,∴AE=4x.∵sin∠PAO=,∴在Rt△ACE中=,∴=,∴=,解得x=3,∴AO=2x=6,即⊙O的半径为6.方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计1.解直角三角形的基本类型及其解法;2.解直角三角形的综合.本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2021-12-07 18:00:06 页数:3
价格:¥3 大小:647.00 KB
文章作者:随遇而安

推荐特供

MORE