首页

第二十六章反比例函数26.1反比例函数26.1.1反比例函数教学课件(新人教版九年级下册)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/26

2/26

3/26

4/26

剩余22页未读,查看更多内容需下载

26.1反比例函数人教版数学九年级下册26.1.1反比例函数\n当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越安全,钉子越少反而越危险,你认同吗?为什么?导入新知\n1.理解并掌握反比例函数的概念.2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式.素养目标3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.\n下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;探究新知知识点1反比例函数的定义\n(2)某住宅小区要种植一块面积为1000m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化;(3)已知北京市的总面积为1.64×104km2,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化.探究新知\n【观察】这三个函数解析式有什么共同点?一般地,形如(k是常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数.都是的形式,其中k是非零常数.传授新知探究新知\n反比例函数:形如(k为常数,且k≠0)【思考】1.自变量x的取值范围是什么?探究新知因为x作为分母,不能等于零,因此自变量x的取值范围是所有非零实数.2.在实际问题中自变量x的取值范围是什么?要根据具体情况来确定.例如,在前面得到的第二个解析式,x的取值范围是x>0,且当x取每一个确定的值时,y都有唯一确定的值与其对应.\n反比例函数的三种表达方式:(注意k≠0)探究新知3.形如的式子是反比例函数吗?式子呢?\n巩固练习下列函数中哪些是反比例函数,并指出相应k的值?①y=3x-1②y=2x2③④⑤y=3x-1⑥⑦不是是,k=1不是不是是,k=3是,是,\n巩固练习在下列函数中,y是x的反比例函数的是()A.B.C.xy=5D.C\n例1已知函数是反比例函数,求m的值.所以2m2+3m-3=-12m2+m-1≠0解得m=-2.解:因为是反比例函数,探究新知素养考点1利用反比例函数的定义求字母的值归纳总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可,如本题中x的次数为-1,且系数不等于0.\n(1)当m=_____时,函数是反比例函数.(2)已知函数是反比例函数,则m=_______.巩固练习1.56(3)若函数是反比例函数,则m的值为______.2\n例2已知y是x的反比例函数,并且当x=2时,y=6.(1)写出y关于x的函数解析式;分析:因为y是x的反比例函数,所以设.把x=2和y=6代入上式,就可求出常数k的值.解:(1)设.因为当x=2时,y=6,所以有解得k=12.因此探究新知素养考点2利用待定系数法求反比例函数的解析式(2)当x=4时,求y的值.(2)把x=4代入,得\n探究新知用待定系数法求反比例函数解析式的一般步骤是:(1)设,即设所求的反比例函数解析式为(k≠0).(2)代,即将已知条件中对应的x、y值代入中得到关于k的方程.(3)解,即解方程,求出k的值.(4)定,即将k值代入中,确定函数解析式.归纳总结\n已知y与x+1成反比例,并且当x=3时,y=4.(1)写出y关于x的函数解析式;(2)当x=7时,求y的值.解:(1)设,因为当x=3时,y=4,所以有,解得k=16,因此.(2)当x=7时,巩固练习\n人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄.当车速为50km/h时,视野为80度,如果视野f(度)是车速v(km/h)的反比例函数,求f关于v的函数解析式,并计算当车速为100km/h时视野的度数.当v=100时,f=40.所以当车速为100km/h时视野为40度.解:设.由题意知,当v=50时,f=80,解得k=4000.因此所以知识点2建立反比例函数的模型解答问题探究新知\n如图,已知菱形ABCD的面积为180,设它的两条对角线AC,BD的长分别为x,y.写出变量y与x之间的关系式,并指出它是什么函数.ABCD解:因为菱形的面积等于两条对角线长乘积的一半,所以所以变量y与x之间的关系式为,它是反比例函数.巩固练习\n连接中考C已知反比例函数的解析式为,则a的取值范围是(  )A.a≠2B.a≠﹣2C.a≠±2D.a=±2\n1.下列函数:(1),(2),(3)xy=9,(4),(5),(6)y=2x-1,(7),其中是反比例函数的是_____________.(2)课堂检测基础巩固题(3)(5)\n3.矩形的面积为4,一条边的长为x,另一条边的长为y,则y与x的函数解析式为.2.苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间的函数解析式为_________.课堂检测\n4.若函数是反比例函数,则m的取值是.35.已知y与x成反比例,且当x=-2时,y=3,则y与x之间的函数解析式是,当x=-3时,y=.2课堂检测\n小明家离学校1000m,每天他往返于两地之间,有时步行,有时骑车.假设小明每天上学时的平均速度为v(m/min),所用的时间为t(min).(1)求变量v和t之间的函数关系式;解:(t>0).课堂检测能力提升题\n(2)小明星期二步行上学用了25min,星期三骑自行车上学用了8min,那么他星期三上学时的平均速度比星期二快多少?125-40=85(m/min).答:他星期三上学时的平均速度比星期二快85m/min.解:当t=25时,;当t=8时,;课堂检测\n已知y=y1+y2,y1与(x-1)成正比例,y2与(x+1)成反比例,当x=0时,y=-3;当x=1时,y=-1,求:(1)y关于x的关系式;解:设y1=k1(x-1)(k1≠0),(k2≠0),则.∵x=0时,y=-3;x=1时,y=-1,∴k1=1,k2=-2.-3=-k1+k2,∴∴课堂检测拓广探索题\n(2)当时,y的值.课堂检测解:把代入(1)中函数关系式,得\n建立反比例函数模型用待定系数法求反比例函数解析式反比例函数:定义/三种表达方式反比例函数课堂小结

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-20 20:00:02 页数:26
价格:¥3 大小:2.48 MB
文章作者:随遇而安

推荐特供

MORE