首页

2022年人教版九年级数学上册导学案:24.1.1 圆

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

第二十四章圆24.1圆的有关性质24.1.1圆——圆的相关概念一、新课导入1.导入课题:情景:观察教材第78、79页的图片,欣赏圆形实物,抽象出圆的模型.问题:车轮为什么要做成圆形而不做成方形的呢?由此导入新课.(板书课题)2.学习目标:(1)能叙述圆的描述性定义和集合观点定义.(2)知道弦、直径、弧、半圆、等圆、等弧的意义,并能结合图形描述它们.3.学习重、难点:重点:圆的定义以及弧与半圆、弦与直径之间的关系.难点:圆的集合概念的理解.二、分层学习1.自学指导:(1)自学内容:教材第79页到第80页的例1.(2)自学时间:10分钟.(3)自学方法:看书、观察,并动手操作、思考、归纳.(4)自学参考提纲:①按课本图24.1—2的方式动手画圆,体验圆的形成过程:线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆,这个固定的端点O叫做圆心,线段OA叫做半径,以O为圆心的圆记作⊙O,读作圆O.②⊙O上的任一点到圆心O(定点)的距离等于半径(定长),反过来,到圆心(定点)的距离等于半径(定长)的点都在同一个圆上,即圆是所有到定点O的距离等于定长r的点的集合.③车轮做成圆形依据的就是轮子上所有点到轮轴的距离都相等.④如何在操场上画一个半径是5m的圆?说出你的做法.,拿一根5m长的绳子,站定一端当做圆的圆心,再让另一个人拉紧绳子的另一端,绕着走一圈,所走的轨迹就是半径为5m的圆.⑤以例1为例说明怎样证明几个点在同一个圆上.分别证明这几个点到圆心的距离等于半径即可.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生对圆的两种定义的学习情况.②差异指导:从圆的描述性定义中抽象出圆的集合观点定义.(2)生助生:生生互动交流、研讨.4.强化:(1)圆的定义.(2)证明几个点在同一个圆上:证明这几个点到某一个点的距离都相等即可.(3)练习:你见过树的年轮吗?从树木的年轮,可以知道树木的年龄,把树木的横截面看成是圆形的,如果一棵20年树龄的树的树干直径是23cm,这棵树的半径平均每年增加多少?解:23÷2÷20=0.575(cm)答:这棵树的半径平均每年增加0.575cm.1.自学指导:(1)自学内容:教材第80页例1下面部分的内容.(2)自学时间:5分钟.(3)自学方法:阅读、分析、理解课文.(4)自学参考提纲:①弦与直径有何关系?半径是弦吗?经过圆心的弦叫做直径.半径不是弦.②什么是弧?什么是半圆?圆上任意两点间的部分叫做弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.③能够重合的两个圆叫做等圆,在同圆或等圆中,能够互相重合的弧叫做等弧.④用几何符号表示右图中所有的弦和弧.,弦:AB、AC;弧:2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生对这些概念的理解情况,能否结合图形正确表示它们.②差异指导:根据学情进行概念辨析指导.(2)生助生:小组内相互交流、订正.4.强化:(1)强调半径和直径.(2)等弧为什么必须在“同圆或等圆中”?解:不在同圆或等圆中的弧不可能重合.(3)练习:判断下列说法是否正确:(对的打“√”,错的打“×”)①弦是直径(×)②直径是弦(√)③直径是圆中最长的弦(√)④弧是半圆(×)⑤半圆是弧(√)⑥同圆中,优弧与劣弧的差是半圆(×)⑦长度相等的弧是等弧(×)⑧两个半圆是等弧(×)三、评价1.学生的自我评价(围绕三维目标):各小组代表总结学习收获和存在的问题与疑点.2.教师对学生的评价:(1)表现性评价:对学生在学习过程中的态度、方法、成效和存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课是从学生感受生活中圆的应用开始,到通过学生动手画圆,培养学生动手、动脑习惯,在操作过程中观察圆的特点,加深对所学知识的认识,并运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列说法正确的是(D)A.直径是弦,弦是直径B.半圆是弧,弧是半圆,C.弦是圆上两点之间的部分D.半径不是弦,直径是最长的弦2.(10分)下列说法中,不正确的是(D)A.过圆心的弦是圆的直径B.等弧的长度一定相等C.周长相等的两个圆是等圆D.长度相等的两条弧是等弧3.(10分)一个圆的最大弦长是10cm,则此圆的半径是5cm.4.(10分)在同一平面内与已知点A的距离等于5cm的所有点所组成的图形是圆.5.(10分)如右图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线相交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是60°.6.(20分)已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:OC=OD.证明:∵OA、OB为⊙O的半径,∴OA=OB.∴∠A=∠B.又∵AC=BD,∴△ACO≌△BDO.∴OC=OD.二、综合应用(20分)7.(20分)已知:如图,在△ABC中,∠C=90°,求证:A、B、C三点在同一个圆上.证明:作AB的中点O,连接OC.∵△ABC是直角三角形.∴OA=OB=OC=12AB.∴A、B、C三点在同一个圆上.三、拓展延伸(10分)8.(10分)求证:直径是圆中最长的弦.证明:如图,在⊙O中,AB是⊙O的直径,半径是r.CD是不同于AB的任意一条弦.连接OC、OD,则OA+OB=OC+OD=2r,即AB=OC+OD.在△OCD中,OC+OD>CD,∴AB>CD.,即直径是圆中最长的弦.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-03 10:09:18 页数:5
价格:¥3 大小:211.60 KB
文章作者:U-60013

推荐特供

MORE