首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
人教版(2012)
>
八年级上册
>
第十四章 整式的乘法与因式分解
>
14.2 乘法公式
>
14.2.1 平方差公式
>
2021年人教版八上数学14.2.1平方差公式课件
2021年人教版八上数学14.2.1平方差公式课件
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/32
2
/32
3
/32
4
/32
剩余28页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
14.2乘法公式14.2.1平方差公式人教版数学八年级上册 某同学在计算97×103时将其变成(100–3)(100+3)并很快得出结果,你知道他运用了什么知识吗?这节课,我们就来一起探讨上述计算的规律.导入新知观察与思考 1.掌握平方差公式的推导及应用.2.了解平方差公式的几何意义,体会数形结合的思想方法.素养目标 多项式与多项式是如何相乘的?(x+3)(x+5)=x2+5x+3x+15=x2+8x+15.(a+b)(m+n)=am+an+bm+bn探究新知知识点平方差公式 面积变了吗?a米5米5米a米(a–5)米相等吗?探究新知 ①(x+1)(x–1);②(m+2)(m–2);③(2m+1)(2m–1);④(5y+z)(5y–z).计算下列多项式的积,你能发现什么规律?做一做探究新知x2–12m2–22(2m)2–12(5y)2–z2这些计算结果有什么特点?想一想 (a+b)(a−b)=a2−b2两数和与这两数差的积,等于这两个数的平方差.公式变形:1.(a–b)(a+b)=a2–b22.(b+a)(–b+a)=a2–b2探究新知平方差公式 注:这里的两数可以是两个单项式也可以是两个多项式等.(a+b)(a–b)=(a)2–(b)2相同为a相反为b,–b适当交换合理加括号探究新知平方差公式 公式中的a和b,既可以是具体的数,也可以是单项式或者多项式;2.左边是两个二项式的积,并且有一项完全相同,另一项互为相反数;3.右边是相同项的平方减去相反项的绝对值的平方.(a+b)(a–b)=a2–b2.温馨提示探究新知 (1+x)(1–x)(–3+a)(–3–a)(0.3x–1)(1+0.3x)(1+a)(–1+a)aba2–b21x–3a12–x2(–3)2–a2a1a2–120.3x1(0.3x)2–12(a–b)(a+b)填一填探究新知 口答下列各题:(1)(–a+b)(a+b)=_________.(2)(a–b)(b+a)=__________.(3)(–a–b)(–a+b)=________.(4)(a–b)(–a–b)=_________.a2–b2a2–b2b2–a2b2–a2做一做探究新知 例1计算:(1)(3x+2)(3x–2);(2)(–x+2y)(–x–2y).(2)原式=(–x)2–(2y)2=x2–4y2.解:(1)原式=(3x)2–22=9x2–4;素养考点1利用平方差公式计算易错警示:当相同项带有“负号”时,必须用括号括起来.探究新知 利用平方差公式计算:(1)(3x–5)(3x+5);(2)(–2a–b)(b–2a);(3)(–7m+8n)(–8n–7m).解:(1)原式=(3x)2–52=9x2–25;(2)原式=(–2a)2–b2=4a2–b2;(3)原式=(–7m)2–(8n)2=49m2–64n2;巩固练习 例2计算:(1)102×98;(2)(y+2)(y–2)–(y–1)(y+5).=1002–22解:(1)102×98=10000–4=(100+2)(100–2)=9996;=y2–4–y2–4y+5(2)(y+2)(y–2)–(y–1)(y+5)=y2–22–(y2+4y–5)=–4y+1.通过合理变形,利用平方差公式,可以简化运算.不符合平方差公式运算条件的乘法,按乘法法则进行运算.素养考点2利用平方差公式简便运算探究新知 (1)51×49;(2)(3x+4)(3x–4)–(2x+3)(3x–2).解:(1)原式=(50+1)(50–1)=502–12=2500–1=2499;(2)原式=(3x)2–42–(6x2+5x–6)=9x2–16–6x2–5x+6=3x2–5x–10.巩固练习计算: 例3先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x),其中x=1,y=2.解:原式=4x2–y2–(4y2–x2)原式=5×12–5×22=–15.=4x2–y2–4y2+x2=5x2–5y2.当x=1,y=2时,素养考点3利用平方差公式进行化简求值探究新知 先化简,再求值:(3–x)(3+x)+(x+1)(x–1),其中x=2.巩固练习解:(3–x)(3+x)+2(x+1)(x–1)=9–x2+2(x2–1)=9–x2+2x2–2=7+x2当x=2时,原式=7+22=7+4=11 例4对于任意的正整数n,整式(3n+1)(3n–1)–(3–n)(3+n)的值一定是10的整数倍吗?即(3n+1)(3n–1)–(3–n)(3+n)的值是10的倍数.解:原式=9n2–1–(9–n2)=10n2–10.∵(10n2–10)÷10=n2–1.n为正整数,∴n2–1为整数素养考点4利用平方差公式进行证明探究新知 对于平方差中的a和b可以是具体的数,也可以是单项式或多项式.在探究整除性或倍数问题时,一般先将代数式化为最简,然后根据结果的特征,判断其是否具有整除性或倍数关系.归纳总结探究新知 巩固练习如果两个连续奇数分别是2n–1,2n+1(其中n为正整数),证明两个连续奇数的平方差是8的倍数.证明:(2n+1)2–(2n–1)2=[(2n+1)+(2n–1)][(2n+1)–(2n–1)]=(2n+1+2n–1)(2n+1–2n+1)=4n×2=8n因为8n是8的倍数,所以结论成立. 例5王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?∵a2>a2–16,解:李大妈吃亏了.理由:原正方形的面积为a2,改变边长后面积为(a+4)(a–4)=a2–16,∴李大妈吃亏了.素养考点5利用平方差公式解决实际问题探究新知 解决实际问题的关键是根据题意列出算式,然后根据公式化简算式,解决问题.归纳总结探究新知 如图1,在边长为a的正方形中挖掉一个边长为b的正方形(a>b),把余下的部分剪成一个矩形(如图2).通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是()A.a2–b2=(a+b)(a–b)B.(a+b)2=a2+2ab+b2C.(a–b)2=a2–2ab+b2D.(a+2b)(a–b)=a2+ab–2b2ba图1ba图2巩固练习A 1.化简(x–1)(x+1)的结果是.2.某同学化简a(a+2b)–(a+b)(a–b)出现了错误,解答过程如下:原式=a2+2ab–(a2–b2)(第一步)=a2+2ab–a2–b2(第二步)=2ab–b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.原式=a2+2ab–(a2–b2)=a2+2ab–a2+b2=2ab+b2.x2–1二去括号时没有变号连接中考 1.下列运算中,可用平方差公式计算的是()A.(x+y)(x+y)B.(–x+y)(x–y)C.(–x–y)(y–x)D.(x+y)(–x–y)C2.计算(2x+1)(2x–1)等于()A.4x2–1B.2x2–1C.4x–1D.4x2+1A3.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是________.10基础巩固题课堂检测 (1)(a+3b)(a–3b);=4a2–9;=4x4–y2.原式=(2a+3)(2a–3)=a2–9b2;=(2a)2–32原式=(–2x2)2–y2原式=(a)2–(3b)2(2)(3+2a)(–3+2a);(3)(–2x2–y)(–2x2+y).4.利用平方差公式计算:课堂检测解:解:解: 5.计算:20152–2014×2016.解:20152–2014×2016=20152–(2015–1)(2015+1)=20152–(20152–12)=20152–20152+12=1课堂检测 6.利用平方差公式计算:(1)(a–2)(a+2)(a2+4)解:原式=(a2–4)(a2+4)=a4–16.(2)(x–y)(x+y)(x2+y2)(x4+y4).解:原式=(x2–y2)(x2+y2)(x4+y4)=(x4–y4)(x4+y4)=x8–y8.课堂检测 先化简,再求值:(x+1)(x–1)+x2(1–x)+x3,其中x=2.解:原式=x2–1+x2–x3+x3=2x2–1.将x=2代入上式,原式=2×22–1=7.能力提升题课堂检测 已知x≠1,计算:(1+x)(1–x)=1–x2,(1–x)(1+x+x2)=1–x3,(1–x)(1+x+x2+x3)=1–x4(1)观察以上各式并猜想:(1–x)(1+x+x2+…+xn)=________;(n为正整数)(2)根据你的猜想计算:①(1–2)(1+2+22+23+24+25)=________;②2+22+23+…+2n=________(n为正整数);③(x–1)(x99+x98+x97+…+x2+x+1)=________;1–xn+1–632n+1–2x100–1拓广探索题课堂检测 平方差公式内容注意两个数的和与这两个数的差的积,等于这两个数的平方差.1.符号表示:(a+b)(a–b)=a2–b22.紧紧抓住“一同一反”这一特征,在应用时,只有两个二项式的积才有可能应用平方差公式;对于不能直接应用公式的,可能要经过变形才可以应用.课堂小结 课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
八年级数学上册导学案:14.2.1 平方差公式
人教版八年级数学上册教案:14.2.1平方差公式(1)
人教版八年级数学上册教案:14.2.1平方差公式(2)
14.2.1平方差公式 课件
1.5 平方差公式第1课时平方差公式的认识课件
2022年人教版八年级数学上册导学案:14.2.1 平方差公式
第14章整式的乘法与因式分解14.2乘法公式14.2.1平方差公式教学课件(新人教版八上)
14.2.1 平方差公式教案(人教版八年级数学上)
14.2.1 平方差公式课课练(人教版八年级数学上册)
14.2.1 平方差公式课件
文档下载
收藏
所属:
初中 - 数学
发布时间:2021-10-23 09:01:00
页数:32
价格:¥3
大小:269.07 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划