首页

福州三中2025届高三4月第14次质检数学试卷 答案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

3/15

4/15

5/15

6/15

7/15

8/15

9/15

10/15

剩余5页未读,查看更多内容需下载

福州三中2024-2025学年第二学期高三第十四次质量检测数学试卷命题人:高三数学集备组审卷人:高三数学集备组注意事项:1.答题前,考生务必将自己的班级、准考证号、姓名填写在答题卡上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效.第Ⅰ卷一、单选题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.11.已知A=−1,,Bxax=+={10}∣,若ABB=,则实数a的取值构成的集合是()2A.{1,2}−B.{2,1}−C.{2,0,1}−D.{1,0,2}−2.设,是两个平面,m,n是两条直线,若m,n,则“∥”是“m//,n//”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件π3.已知向量ab,的夹角为,且a=1,b=3,若与向量b垂直的非零向量c满足ca=+b(其中3,)R,则=()11A.−B.1C.6D.−3614.已知数列bn满足b1=2,bnnb−nn=−122(),设数列的前n项和为Tn,则T10=()bn9101112A.B.C.D.10111213239295.已知(1)+(1+x)+x(1+)++=++++xaaxax012ax9,则a2的值为()A.60B.80C.84D.120216.已知sin2()+=,coscos()+=,则tan+tan(+)=()323234A.B.C.D.23437.如图,正方形D1C1的边长为1B1A1,取正方形各边的四等分点ABCD2,2,2,2,得到第2个正方形ABCD2222,再取正方形ABCD2222各边的四等分点ABCD3,3,3,3,得到第3个正方形ABCD3333,依此方法一直进行下去,若从第k个正方形开始它的面1积小于第1个正方形面积的,则k=()(参考数据:lg20.3)50A.8B.9C.10D.11{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#}PDFShaperProfessional 88.若函数fx()满足对任意nN*,恒有fn()n2,且fx()()y+fx=()++fyxy4,则fi()的最小值是()i=1A.408B.400C.204D.200二、多选题:本大题共3小题,每小题6分,在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得6分,部分选对得部分分,有选错得0分.9.已知2ab,R,关于x的方程xaxb++=0的一个根是z1=−12i,另一个根是z2,其中i是虚数单位,则下面四个选项正确的有()A.复数z1对应的点在第四象限B.ab=−10C.zz12=D.zz1210.已知函数fx()x(=+)tan在某段区间内的大致图像如图,则下列说法正确的是()2A.=,=+kkZ()63B.fx()的单调区间为:()65,6kk−k+1,ZC.gx()fx()=−2在区间−4,4上有且仅有2个零点D.fx()先保持纵坐标不变,横坐标变为原来的2倍,再向左平移1个单位后是奇函数11.我们把既有对称中心又有对称轴的曲线称为“优美曲线”,“优美曲线”与其对称轴的交点叫作“优美曲线”2222的顶点.对于“优美曲线”Cx:+25xy+y−=90,则()A.曲线C关于直线yx=对称B.曲线C有4个顶点27C.曲线C与直线yx=−+3有4个交点D.曲线C上动点P到原点距离的最小值为5第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分,把答案填在答题卡相应横线上.12.一先一后抛掷两枚质地均匀的骰子,设得到的点数分别为a,b,在已知ab+8的条件下,ab的概率为___________.213.已知fx()xx=−5+sin,则满足fa()+f(−40)的实数a的取值范围是.14.双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的左右两支分别交3于M,N两点,且cos=FNF12,则C的离心率为.5四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)322已知函数fx()=x−ax−ax+1.(1)当a=2时,求曲线yfx=()在点(1,(1))f处的切线方程;(2)讨论fx()的单调性.{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 16.(本小题满分15分)已知单调递增的等比数列an满足a234aa++=28,且a3+2是aa24,的等差中项.(1)求数列an的通项公式;b=aloga,其前n项和为S,若对于n2,且*2(2)设nn2nnnN,(1)nmS−(1)−−nn恒成立,求实数m的取值范围.17.(本小题满分15分)如图①,在等腰梯形ABCD中,BCAD∥,ADBC==24,AC=23,E为AD边的中点.将CDE沿CE翻折,使点D到达点S的位置,得到四棱锥SABCE−,如图②.(1)证明:在翻折过程中,始终满足SBCE⊥;(2)当SE⊥BC时,求平面SAB与平面SBC夹角的正弦值.18.(本小题满分17分)22在直角坐标平面内,设P是圆xy+=4上的动点,PQx⊥轴,垂足为点Q,点M在QP的延长线上,且QP2=,点M的轨迹为曲线C.QM3(1)求曲线C的方程;(2)设l是过点N(4,0)的动直线.①当直线l的斜率为−2时,曲线C上是否存在一点D,使得点D到直线l的距离最小?若存在,求出点D的坐标;若不存在,请说明理由;②若直线l与曲线C相交于A,B两点,点B关于x轴的对称点为E,直线AE与x轴的交点为F,求△ABF面积的最大值.{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 19.(本小题满分17分)泊松分布是一种统计与概率学里常见的离散型分布,特别适合用于描述单位时间(或单位空间)内随机事件发生的次数,例如:某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一个产品上的缺陷数,显微镜下单位分区内的细菌分布数等,因此,在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位.若随机变量X服从参数为k()−0的泊松分布(记作Xπ()),则其概率分布为PX()k==e,kN,其中e为自然对数的底数.k!(1)当≥20时,泊松分布可以用正态分布来近似;当50时,泊松分布基本上就等于正态分布,此时可认为XN(),.若Xπ(100),求PX(110120)的值(保留三位小数);(2)某公司制造微型芯片,次品率为0.1%,各芯片是否为次品相互独立,以X记产品中的次品数.①若XBnp(),,求在1000个产品中至少有2个次品的概率;②若X~π(),=np,求在1000个产品中至少有2个次品的概率.通过比较计算结果,你发现了什么规律?(3)若X~π(),且PX()10.01,求的最大值(保留一位小数).2参考数据:若XN~,(),则一有PX(−+)0.6827,PX(−2+2)0.9545,1()10009990.3678.PX−33+0.9973;0.9990.3676,0.9990.3680,e{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 福州三中2024-2025学年第二学期高三第十四次质量检测数学试卷第Ⅰ卷一、单选题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.11.已知A=−1,,Bxax=+={10}∣,若ABB=,则实数a的取值构成的集合是()2A.{1,2}−B.{2,1}−C.{2,0,1}−D.{1,0,2}−1【解析】由AB=B得BA.当a=0时,B=,满足BA;当a0时B=−,因为BA,a111所以−=−1或−=,解得a=1或a=−2.故选:C.aa22.设,是两个平面,m,n是两条直线,若m,n,则“∥”是“m//,n//”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若m//,n//,则,可能平行,也可能相交,故∥不一定成立,若∥,则m//,n//,故∥是m//,n//的充分不必要条件.故选:A.π3.已知向量ab,的夹角为,且a=1,b=3,若与向量b垂直的非零向量c满足ca=+b(其中3,)R,则=()11A.−B.1C.6D.−362【解析】由ca=+b,bc⊥,得bc=babab+()=b+=0.π3231又ab=ab=cos,b=9,所以+=90,整理,得=−.故选:D.322614.已知数列bn满足b1=2,bnnb−nn=−122(),设数列的前n项和为Tn,则T10=()bn9101112A.B.C.D.10111213【解析】因为bnnb−nn=−122(),且b1=2,()22nn+2所以当n2时,bnbb=b+b1−2b+13−2()()++−=+++()bnnb−1+=246=+2nnn.222因为b1=2也满足bn=+nn,所以bn=+nn.1111111111110因为==−,所以Tn=11−+−++−=−.所以T10=−1=.bnnnnn()++11223nnn++111111故选:B.239295.已知(1+x)+(1+x)++(1+x)=a0+axax1+2++ax9,则a2的值为()A.60B.80C.84D.1202222【解析】由题知a2=C2+C3+C4++C9=+++1361015212836120++++=.故选:D.{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 216.已知sin2()+=,coscos()+=,则tantan++=()()323234A.B.C.D.234321【解析】因为sin2(),coscos+=()+=,32sinsinsin()cos++cos++sin()()所以tantan++=+()=coscos()+coscos+()2sin++()sin2()+34====.故选:D.coscos+cos+cos()()1327.如图,正方形A1B1C1D1的边长为1,取正方形各边的四等分点ABCD22,2,2,,得到第2个正方形ABCD2222,再取正方形ABCD2222各边的四等分点ABCD33,3,,3,得到第3个正方形ABCD3333,依此方法一直进行下去,若从第k个正方形开始它的面积1小于第1个正方形面积的,则k=()(参考数据:lg20.3)50A.8B.9C.10D.11223110【解析】由已知得正方形的边长成等比数列,第二个正方形的边长为+=,444210an105所以其公比为.设第n个正方形的面积为an,则==()n2,4a48n−1n−1n−1515151当n=1时,a1=1,所以an=,由aan1,得,所以()n−1lglg,850850850−−lg50−lg51−(1lg2)−−1lg22−−0.32即n−1====8.5,lg5lg8−−−−lg53lg2−−1lg23lg214lg2140.3所以n9.5,所以k=10.故选:C.88.若函数fx()满足对任意nN*,恒有fn()n2,且fx()()y+fx=()++fyxy4,则fi()的最小值是()i=1A.408B.400C.204D.200222【解析】因为fx()()y+fx=()++fyxy4,所以fx()y+x−y+fx=−2(x+fy)−22y()().2设gx()fx()=−x2,那么gx()()y+gx=()+gy,因此gn()gn(=)()−g+gn(=)()−+g1()+g1=gn2(−1)+()1g221==+−=g=n()(−g2ng21nf11)()2()(),8888222因此fn()=2n+f()1−2n2n,取n=1,得到f()12,所以fi()=2i+[(1)2]f−i2i=408,i=1i=1i=1i=18所以fi()的最小值是408.故选:A.i=1{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 二、多选题:本大题共3小题,每小题6分,在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得6分,部分选对得部分分,有选错得0分.9.已知2ab,R,关于x的方程xaxb++=0的一个根是z1=−12i,另一个根是z2,其中i是虚数单位,则下面四个选项正确的有()A.复数z1对应的点在第四象限B.ab=−10C.zz12=D.zz12【解析】复数z1=−12i,复数z1对应的点为(1,2)−,所以,复数z1对应的点在第四象限,故A正确;22已知ab,R,关于x的方程xaxb++=0的一个根是z1=−12i,则(12i)(−)+−12i+=ab0,ab+−=30a=−2整理得()(ab+−)a−3+2=4i0,所以;解得:,所以,ab=−10,故B正确;24a0+=b=52由ab=−25=,得方程xx−2+=50,又知道一个根是z1=−12i,所以,结合韦达定理,可得另一个根是z2=+12i,所以,zz12=,故C正确;两个虚数不能比较大小,故D错误.故选:ABC.10.已知函数fx()x(=+)tan在某段区间内的大致图像如图,则下列说法正确的是2A.=,=+kkZ()63B.fx()的单调区间为:()65,6kk−k+1,ZC.gx()=−fx()2在区间−4,4上有且仅有2个零点D.fx()先保持纵坐标不变,横坐标变为原来的2倍,再向左平移1个单位后是奇函数【解析】对于A,f()03=,故tan=3=+k11,kZ,fx()上两点()0,32,、3()−有对称中心3kk22k不影响fx()的取值,不妨令其为(1,0),故fx()有渐近线x=1,所以+==−−k1,由于12230,而T=303,所以k2=1,=,A错误;6对于B,不妨设fx()x=+tan,−++k+xkxkkk−+(65,61,Z),B正确;632632对于C,x轴以下的图象翻折上去,作出fx()的图像,与直线y=2有2个交点,C正确;5对于D,变换后:hx()x=+tan不是奇函数,D错误.故选:BC.121211.我们把既有对称中心又有对称轴的曲线称为“优美曲线”,“优美曲线”与其对称轴的交点叫作“优美曲线”2222的顶点.对于“优美曲线”Cx:xy++25y−=90,则()A.曲线C关于直线yx=对称B.曲线C有4个顶点27C.曲线C与直线yx=−+3有4个交点D.曲线C上动点P到原点距离的最小值为5【解析】对于A,将xy,交换方程依然成立,所以曲线关于yx=对称,A正确;对于B,易得曲线有四条对称轴x轴,y轴,直线yx=,直线yx=−,共有8个顶点,B错误;{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 2222xxy++25y−=902222对于C,由得xxx+x−+2533+−+(90)()−=,yx=−+3222即253xx2xx(3)−+0()+−=,可得xx()x−x−325+(=7520),22对于方程2575xx2−0+=,=−(75)−42520,2则方程2575xx2−0+=有两不等实根,且方程的根不为0和3,2所以方程xx()x−x−325+(=7520)有4个不等实根,从而曲线C与直线yx=−+3有4个交点,C正确;2222229−x对于D,由xxy++25y−=90得y=,225x+12222229−+xx2512262251x226+222262x+y=x+2=+2−22−=−,25x+1252525(x+1)25252525()1x+252525225x+1=22622261−2222262当且仅当2,即x=时取等号,则xy+的最小值为−,252525(x+1)25252522262曲线C上动点P到原点距离的最小值−,D错误.故选:AC.2525第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分,把答案填在答题卡相应横线上.12.一先一后抛掷两枚质地均匀的骰子,设得到的点数分别为a,b,在已知ab+8的条件下,ab的概率为___________.【解析】设先后抛掷的两枚质地均匀的骰子的点数分别为a,b,则样本空间={(,)abab∣,{1,2,3,4,5,6}},其包含的样本点有36个.记事件A=“ab+8”,则事件A包含的样本点为(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6),共10个.记事件B=“ab”,则事件AB=“ab+8且ab”,其包含的样本点有4个,为(3,6),(4,5),(4,6),(5,6).所以PAB()422由条件概率公式知PBA()∣===.故答案为:.PA()1055213.已知fx()xx=−5+sin,则满足fa()+f(−40)的实数a的取值范围是.【解析】因为fx()=−5x+sinx,该函数的定义域为R,fx(x)−x(=)xx+fx−=5−sin=−5sin(),故函数fx()为奇函数,因为fxx()=−cos50对任意的xR恒成立,所以函数fx()在R上为减函数,faf2+−40可得fa(2)−f(−44)=f(),所以2由()()a4,解得−22a,即实数a的取值范围是()−2,2.故答案为:()−2,2.14.双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C的左右两支分别交3于M,N两点,且cos=FNF12,则C的离心率为.522xy【解析】不妨设双曲线C的标准方程为22−=1(ab0,0),则Fc1()−,0,Fc2(,0),FF12=2c,abPDa设过F1的直线与圆D相切于点P,则在RtFPD1中,PD=a,FD1=c,sinPFD1==,FDc1{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 34cos=FNF,sin=FNF且点N位于双曲线的右支,如图所示,121255NFFF212在△FNF12中,由正弦定理得=,sinsinNFFFNF1212a2cFF12NFFsin12c59NF2===a,NF12NF−=a2,NF1a=,sinFNF422125222在△FNF12中,FF12NF=NF+−NF12NFFNF2cos1212,2229595322c1313即42caa=a+a−,化简得4ca13=,即e==.故答案为:.22225a22四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)322已知函数fx()=x−ax−ax+1.(1)当a=2时,求曲线yfx=()在点(1,(1))f处的切线方程;(2)讨论fx()的单调性.322解:(1)当a=2时,fx()x2x=4x−1−+,则()xxf=−3−44x,·······································1分从而f(1)4=−,f(1)5=−,··························································································3分故所求切线方程为yx+=−45(1)−,即yx=−51+(或510xy+−=);······································5分(2)由题意可得fx()的定义域为R,22fx()x3axa=2−(3−)(=+xaxa)−,··············································································7分aaa当−a,即a0时,由fx()0,得xa或x−,由fx()0,得ax−,333aa则fx()在(,)−a和−+,上单调递增,在a,−上单调递减;·········································9分33a当−=a,即a=0时,fx()0恒成立,则fx()在R上单调递增;·······································10分3aaa当−a,即a0时,由fx()0,得x−或xa,由fx()0,得−xa,333aa则fx()在−−,和(,a)+上单调递增,在−,a上单调递减.·········································12分33aa综上,当a0时,fx()在(,)−a和−+,上单调递增,在a,−上单调递减;33当a=0时,fx()在R上单调递增;aa当a0时,fx()在−−,和(,a+)上单调递增,在−,a上单调递减.·····························13分33{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 16.(本小题满分15分)已知单调递增的等比数列an满足a234aa++=28,且a3+2是aa24,的等差中项.(1)求数列an的通项公式;b=aloga,其前n项和为S,若对于n2,且*2(2)设nn2nnnN,(1)nmS−(1)−−nn恒成立,求实数m的取值范围.解:(1)设等比数列的首项为a1,公比为q,由题意可知:2(a3+2)=a2+a4,······················································································1分又因为a234aa++=28,所以a3a2a4=+8,=20.································································2分3a1=32aqaq11+=20a1=22,解得或1(舍),································································4分aq=8q=2q=12n∴an=2;·················································································································5分n(2)由(1)知,bnn=2,························································································6分23n=+Sn1222++32+...2,①n234n+1212Sn=22+32+...2++,②·············································································7分n23nn+1①-②得−=+Snn22+++22−2,········································································8分n+122−nn++11=−S−(=2)−(+1)22nn,··········································································10分n12−221n+若(1)nmS−(1)−−nn对于n2恒成立,则(1)nmn−(1)2−+−−21n,21n+n−1(1)nmn−(1)(2−−1),m,···································································11分n+121−n−1令fn()=n+1,则mfn()max,·················································································12分21−n+1nn−−1+(2)21n因为fn(1)fn+()−=−=,n+2n+1n+2n+12121−(2−1)(2−−1)当n2时,fn(1)fn+()−0,即fn(1)fn+(),1所以当n2时,fn()单调递减,则fn()的最大值为,····················································14分71故实数m的取值范围为,+.···················································································15分7{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 17.(本小题满分15分)如图①,在等腰梯形ABCD中,BCAD∥,ADBC==24,AC=23,E为AD边的中点.将CDE沿CE翻折,使点D到达点S的位置,得到四棱锥SABCE−,如图②.(1)证明:在翻折过程中,始终满足SBCE⊥;(2)当SE⊥BC时,求平面SAB与平面SBC夹角的正弦值.解:(1)证明:因为E为AD的中点,且ADBC=2,所以AEBCAE//,=BC,所以四边形ABCE为平行四边形,所以ABCE=,所以CECD=.··········································1分取DE的中点P,连接CP,如图①,则CPDE⊥.在RtACP中,ACAP==23,3,所以22CP=AC−AP=3.在RtCPD中,PD=1,所以22CD=CP+PD=2,所以CDBC==2.连接BE,则四边形BEDC为菱形.·················································································3分连接BD,交CE于点F,则CEBD⊥.在四棱锥S−ABCE中,设CE的中点为F,连接BF,SF,如图②,则BFCESF⊥⊥,CE.因为BFSFFBFSF=,,平面SBF,所以CE⊥平面SBF.·················································5分又SB平面SBF,因此在翻折过程中,始终满足SBCE⊥.·················································6分(2)设BC的中点为G,连接EGSG,,则EGBC⊥.因为SEBCSE⊥,EGESEEG=,,平面SEG,所以BC⊥平面SEG.又SG平面SEG,所以BCSG⊥,因此SB=SC,所以四面体SBCE−是棱长为2的正四面体.26设BFEG,交于点I,连接IS,则IS⊥平面ABCE,且得IS=.·······································8分3设AC与BE交于点O,由(1)知四边形ABCE是菱形,故ACBE⊥,且OAOC===OB3,1.以O为坐标原点,OAOE,分别为x轴,y轴的正方向,过点O与IS同向为z轴的正方向,建立空间直角坐标系,326则A(3,0,0,)B(0,1,0,−)C(−3,0,0,)S−,0,,·························································9分334326326所以AB=−(3,1,0,−)AS=−,0,,BC=−(3,1,0,)BS=−,1,.33333xy+=0,mAB=0,11设平面SAB的法向量为m=(xyz1,,11),则即4326mAS=0,−xz+=0.1133令x1=1,得yz11=−3,=2,所以平面SAB的一个法向量为m=−(1,3,2).·························11分{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} −+=30,xynBC=0,22设平面SBC的法向量为nxyz=()22,,2,则即326nBS=0,−++=xyz0.22233令z2=1,得xy22=−=−2,6,所以平面SBC的一个法向量为n=−()−2,6,1.·····················12分设平面SAB与平面SBC的夹角为,mn−++23223则coscos=,==mn=,····························································14分mn6336所以平面SAB与平面SBC夹角的正弦值为.·································································15分318.(本小题满分17分)22在直角坐标平面内,设P是圆xy+=4上的动点,PQx⊥轴,垂足为点Q,点M在QP的延长线上,且QP2=,点M的轨迹为曲线C.QM3(1)求曲线C的方程;(2)设l是过点N()4,0的动直线.①当直线l的斜率为−2时,曲线C上是否存在一点D,使得点D到直线l的距离最小?若存在,求出点D的坐标;若不存在,请说明理由;②若直线l与曲线C相交于A,B两点,点B关于x轴的对称点为E,直线AE与x轴的交点为F,求△ABF面积的最大值.22解:(1)设Mxy(),,Pxy()00,,则xy00+=1,y022QP2=yy=0因为=,所以y3,整理得3,······························································2分QM3xx=xx0=02222224yxy代入xy00+=1中,得x+=4,整理得+=1,94922xy所以曲线C的方程为+=1;···················································································4分49(2)①l的直线方程为yx=−24−(),整理得2xy+−=80,如图,ll1∥,l1与椭圆相切于点D,当D在如图所示的位置时,点D到直线l的距离最小,·········5分设l1:yxb=−2+,y=−2xb+2222联立xy得25x−16bx+4b−36=0,·····································································6分+=14922Δ=−(16)bb4254−=360(),解得b=5或-5(舍去),8892x=,则y=−+=25,则2580xx64−+0=,解得55589所以存在点D到直线l的距离最小,坐标为,;····························································8分55②设l的方程为x=+my4,Axy(11,),Bxy(22,),则Ex(22,−y),{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 22xy+=122联立49得()94m72ymy+1080++=,·································································9分xmy=+4222323Δ=(72mm)−49(+4108)0,解得m或m−,33−72m108则yy12+=2,yy12=2,···············································································10分94m+94m+22222−72108m212912m−ABm=y+yyy14+−()1212=+14m22−=+1m2,···········12分94mm94++94m+yy+12直线AE的方程为yy−xx=−11(),令y=0得xx−1210872−m24m+xy21xy12+24myy12y1y++2()94mm9224++−72mx=====1,··································13分yyy+y+−72m−72m1212294m+14−3所以F(1,0),则点F到直线AB的距离d==,···············································14分2211++mm2211129123189122mm−−SABdABF=m=+1=2,············································15分2294mm++1+m29418t18189S===令2ABF216162164,9mt120−=,则t+t+61627当且仅当t=,即t=4,m=时等号成立,t39所以△ABF面积的最大值为.·····················································································17分4{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} 19.(本小题满分17分)泊松分布是一种统计与概率学里常见的离散型分布,特别适合用于描述单位时间(或单位空间)内随机事件发生的次数,例如:某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一个产品上的缺陷数,显微镜下单位分区内的细菌分布数等,因此,在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位.若随机变量X服从参数为k()−0的泊松分布(记作Xπ()),则其概率分布为PX()k==e,kN,其中e为自然对数的底数.k!(1)当≥20时,泊松分布可以用正态分布来近似;当50时,泊松分布基本上就等于正态分布,此时可认为XN(),.若Xπ(100),求PX(110120)的值(保留三位小数);(2)某公司制造微型芯片,次品率为0.1%,各芯片是否为次品相互独立,以X记产品中的次品数.①若XBnp(),,求在1000个产品中至少有2个次品的概率;②若X~π(),=np,求在1000个产品中至少有2个次品的概率.通过比较计算结果,你发现了什么规律?(3)若X~π(),且PX(1)0.01,求的最大值(保留一位小数).2参考数据:若XN~,(),则一有PX(−+)0.6827,PX(−22+0.9545),1()10009990.3678.PX−33+0.9973;0.9990.3676,0.9990.3680,e解:(1)因为当X~(),且=100时,可近似地认为XN~,(),即XN~100,100(),··········1分这里=100,==10010,························································································2分所以PX(110PX120=10010++=)(+10020+)(PX2)10.95450.6827−=−PX(+−−2+=2)(PX)=0.13590.136;··················4分22(2)①若XB~1000,0.001(),······················································································5分()10001999PX=0=1(−.0001).03676;()==C1000XP3680.0001,·······················999.01.07分10001999则PX()()PX()=−21PX01=10.999−==−C−0.9990.0010.26441000;·························8分②若X~π(),其中==np1,···················································································9分11则PX()()PX()=−21PX01=1−0.2644==−−.·························································11分ee比较计算结果,可以发现利用二项分布计算的结果与利用泊松分布计算的结果是相等的,说明某些特定情形下,可以用泊松分布来计算二项分布.······················································12分(3)由于X~π(),所以PX()()PX()=−11PX01=−=,−−由泊松分布的概率公式可得PX()==0e,PX(==1e),−−−所以PX(1)=−1e−e=−1(1+)e,······································································13分−因为PX()10.01,即(1)e+0.99,········································································14分x+1x构造函数gx()=(x0),则gx()=−0,所以函数gx()在()0,+上单调递减,xxee22由于g()1==0.80.99,g()01=,所以,01x,e2.510.1+10.1+又因为g(0.1)=,需要比较与0.99的大小,0.10.1ee2−0.1而0.9910.1=−,所以,相当于比较e与10.1−的大小,·····················································15分{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#} xx构造函数hx()x(x=)−−−e10.20,所以hx()=e10−对任意的x−()0.2,0恒成立,所以函数hx()在()−0.2,0上单调递减,且h()00=,hh−0.1=+−e0.11=−0,100,所以−0.110.1+所以()()e10.1−,即0.11.10.9=0.99,e10.2+10.2+g0.2=,需要比较2且()0.20.2与0.99的大小关系,而0.9910.1=−,ee2−0.20.2所以相当于比较10.2e−−()与1−−的大小,2x12构造函数mx()x(x=)−1−e−1,其中−0.50x,且m()00=,4xx11mx()xx=−x+e=−,22当x−(0.5,0)时,mx()0,所以,函数mx()在(−0.5,0)上单调递增,2−0.20.210.2+即mm()−()0.2=00,即10.2e−−()−−1,即0.99,0.22e因此,的最大值为0.1.····························································································17分{#{QQABRYiQogggAAJAAQgCQwEiCkGQkBACCQoGxBAQoAAAwRFABAA=}#}

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2025-04-22 17:20:01 页数:15
价格:¥3 大小:1.32 MB
文章作者:180****8757

推荐特供

MORE