首页

【联考】广东省五校2022-2023学年高二下学期期末联考数学试题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/22

2/22

剩余20页未读,查看更多内容需下载

2024届广东五校高二下学期期末联考数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则为(    )A.B.C.D.2.若对,恒成立,其中,,则(  )A.3B.2C.0D.3.任给,对应关系使方程的解与对应,则是函数的一个充分条件是(    )A.B.C.D.4.在正四棱锥中,分别为的中点,直线与所成角的余弦值为,则三棱锥的体积为(    )A.B.C.D.5.已知复数,则(    )A.2022B.2023C.D.6.已知集合,若从U的所有子集中,等可能地抽取满足条件“,”和“若,则”的两个非空集合A,B,则集合A中至少有三个元素的概率为(    ).A.B.C.D.7.已知双曲线的右焦点为F,过点F且斜率为的直线l交双曲线于A、B两点,线段AB的中垂线交x轴于点D.若,则双曲线的离心率取值范围是(    )A.B.C.D.8.已知过点不可能作曲线的切线.对于满足上述条件的任意的b,函数恒有两个不同的极值点,则a的取值范围是(    ) A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.关于x的不等式的解集中恰有4个整数,则a的值可以是(    )A.B.C.D.-110.用长为3的铁丝围成,记的内角的对边分别为,已知,则(    )A.存在满足成公差不为0的等差数列B.存在满足成等比数列C.的内部可以放入的最大圆的半径为D.可以完全覆盖的最小圆的半径为11.已知抛物线的焦点为,点为抛物线上两个位于第一象限的动点,且有.直线与准线分别交于两点,则下列说法正确的是(    )A.当时,B.当时,C.当时,D.当时,延长交准线于12.已知函数,其中,则(    )A.当,,时,曲线既不是轴对称图形也不是中心对称图形B.当,,时,曲线要么是轴对称图形要么是中心对称图形C.当,,时,曲线是中心对称图形D.当,时,曲线可能是轴对称图形三、填空题:本题共4小题,每小题5分,满分20分.13.在锐角三角形中角A、B、C的对边分别为a,b,c,记,若,则.14.对于项数为10的数列,若满足(其中为正整数,),且,设,则的最大值为.15.已知函数及其导函数的定义域均为R,若,都为偶函数,则.16.已知等边的边长为2,将其绕着边旋转角度,使点旋转到位置.记四面体 的内切球半径和外接球半径依次为,当四面体的表面积最大时,;.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知数列与的前项和分别为和,且对任意,恒成立.(1)若,,求;(2)若对任意,都有及恒成立,求正整数的最小值.18.在锐角△中,角所对的边分别为,已知.(1)求角的大小;(2)若,求△内切圆半径的取值范围.19.为落实立德树人根本任务,坚持五育并举全面推进素质教育,某学校举行了乒乓球比赛,其中参加男子乒乓球决赛的12名队员来自3个不同校区,三个校区的队员人数分别是3,4,5.本次决赛的比赛赛制采取单循环方式,即每名队员进行11场比赛(每场比赛都采取5局3胜制),最后根据积分选出最后的冠军.积分规则如下:比赛中以或取胜的队员积3分,失败的队员积0分;而在比赛中以取胜的队员积2分,失败的队员的队员积1分.已知第10轮张三对抗李四,设每局比赛张三取胜的概率均为.(1)比赛结束后冠亚军(没有并列)恰好来自不同校区的概率是多少?(2)第10轮比赛中,记张三取胜的概率为,求出的最大值点.20.中国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍是茅草屋顶.”现有一个刍甍如图所示,四边形ABCD为正方形,四边形ABFE,CDEF为两个全等的等腰梯形,,,,.(1)当点N为线段AD的中点时,求证:直线平面EFN;(2)当点N在线段AD上时(包含端点),求平面BFN和平面ADE的夹角的余弦值的取值范围. 21.已知函数,为的导数.(1)证明:在区间上存在唯一极大值点;(2)求函数的零点个数.22.已知椭圆:的离心率为,其左、右焦点为、,过作不与轴重合的直线交椭圆于、两点,的周长为8.(1)求椭圆的方程;(2)设线段的垂直平分线交轴于点,是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.(3)以为圆心4为半径作圆,过作直线交圆于、两点,求四边形的面积的最小值及取得最小值时直线的方程. 参考答案:1.C【详解】解不等式,得或,即或,则,函数有意义,则,解得,则,所以.2.C【详解】由,得,所以,所以.3.A【详解】根据函数的定义,对任意,按,在的范围中必有唯一的值与之对应,,则,则的范围要包含,4.B【详解】连接,,如图,  设,由,得即为与所成的角,在中,易知,,解得.设,在中,①,因为,故,则在中,,即②,①②两式相加求得,因为,解得.因为为的中点,故,因为,,所以三角形为等腰直角三角形,则在等腰直角三角形中,易求得到的距离即到底面的距离为,故到平面的距离为,,故所求三棱锥的体积为.5.B【详解】设,则,由题意可得:可得关于的方程的根为,故, 整理得,即,令,可得,且2022为偶数,所以.故选:B.6.C【详解】由,可得中没有重复数字,由,则可得不为空集,且可将中10个数字分为5组,分别为2或20,4或18,6或16,8或14,10或12,且每组数中的一个数如果在集合中,另一个必在集合中,所以集合中元素的个数小于等于集合中元素的个数,所以集合中元素的个数可能为1,2,3,4,5,所以集合的可能的个数为,所以.7.A【详解】设双曲线的右焦点为,则直线,联立方程,消去y得:,则可得,则,设线段的中点,则,即,且,线段的中垂线的斜率为,则线段的中垂线所在直线方程为,令,则,解得,即,则,由题意可得:,即,整理得,则,注意到双曲线的离心率,∴双曲线的离心率取值范围是.8.A【详解】设是曲线上的任意一点,,所以在点处的切线方程为, 代入点得,,由于过点不可能作曲线的切线,则直线与函数的图象没有公共点,,所以函数在区间上导数大于零,函数单调递增;在区间上导数小于零,函数单调递减,所以当时,函数取得极大值也即是最大值,则.对于满足此条件的任意的b,函数恒有两个不同的极值点,等价于恒有两个不同的变号零点,等价于方程有两个不同的解.令,则,,即直线与函数的图象有两个不同的交点.记,则,记,则,所以在上单调递增.令,得.当时,,当时,,所以在上单调递减,上单调递增.所以.所以.因为,所以,所以.即实数a的取值范围是.9.AD【详解】关于的不等式的解集中恰有4个整数,所以,因为时,不等式的解集中的整数有无数多个.不等式,对应的方程为:,方程的根为:和;由题意知,,则,解得;当时,不等式的解集是,解集中含有4个整数:0,1,2,3;满足题意.当时,不等式的解集是,解集中含有4个整数:,0,1,2;满足题意.当时,不等式的解集是,,此时,解集中含有5个整数:,0,1,2,3;不满足题意.当,时,不等式的解集是,,,解集中含有整数个数多于4个,不满足题意.综上知,的值可以是和.10.BCD【详解】依题意知,由余弦定理,得.对A,若成等差数列,则,所以, 所以为常数列,故A错误;对B,若成等比数列,则,所以,即,所以当为等边三角形时成等比数列,故B正确;对C,由,得,解得或(舍),所以的面积的内切圆半径为,当且仅当时取等号,所以的内部可以放入的最大圆的半径为,故C正确;对D,由正弦定理可得:,其中为外接圆半径,因为,当且仅当时,等号成立,所以,所以可以完全覆盖的最小圆的半径为,故D正确.故选:BCD.【点睛】关键点点睛:本题的CD项较难,关键是把问题转化为求三角形的内切圆半径及外接圆半径,然后利用基本不等式及三角形的有关知识即得.11.ACD【分析】易得抛物线的焦点为,准线为,则,,求出的坐标即可判断A;根据即可判断B;结合B选项即可判断C;结合A选项,求出,即可判断D.【详解】抛物线的焦点为,准线为,则,由,得,对于A,当时,,则,,故A正确;对于B,当时,可得,,则, 设直线,把代入,可得,令,则,同理,则,因为,所以,所以,故B错误;对于C,由B选项知,,故C正确;对于D,当时,,则,,,由选项A知,,,,故D正确.故选:ACD.  【点睛】思路点睛:求三角形面积的比值可转化为边长的比值,进而可转化为相似比问题.12.ABC【分析】A选项,等价于说明不存在实数,使,与为常数;B选项,即说明存在实数,使,与为常数;C选项,说明存在实数,使为常数;D选项,等价于说明不存在实数,使.【详解】A选项,此时. 则,.因,则不同时为0,则,则曲线不是轴对称图形;又,  不同时为0,则不为常数,即曲线不是中心对称图形,故A正确;B选项,此时.则,.令,则,比较系数结合可得,则当时,因,则,使,即时,曲线有对称轴;当时,,令,则时,因,则,使,即时,曲线有对称中心;综上,当,,时,曲线要么是轴对称图形要么是中心对称图形,故B正确;C选项,此时.则,.若曲线是中心对称图形, 则为常数,即为常数.则,则当时,因,则,使,即当,,时,曲线是中心对称图形,故C正确;D选项,此时.则.若曲线是轴对称图形,则,使或,与题设矛盾,故当,时,曲线不可能是轴对称图形,故D错误.故选:ABC【点睛】结论点睛:设定义域为,图象关于对称;图象关于对称.13.2【分析】根据余弦定理和数量积的坐标表示可得,然后对目标式切化弦,再利用正弦定理、余弦定理角化边可得. 【详解】因为,所以,又因为,所以,即.所以.故答案为:214.【分析】根据,可得数列中相邻两项的差最大为,再根据数列的增减性计算即可.【详解】因为,所以或,设,则数列中相邻两项的差最大为,要保证,则数列的项有增有减,假如中有个,增量最大为,则有项是减少的,则必有,所以,则或,取,取最大值,按最大连续增量计算,有,即中有最大值为,所以的最大值为.故答案为:.【点睛】关键点睛:说明数列中相邻两项的差最大为,数列的项有增有减,是解决本题的关键.15.520【分析】利用函数的奇偶性,推出函数的图象关于点对称以及关于点对称,即可依次求得的值,根据等差数列的求和公式,即可求得答案.【详解】因为为偶函数,则,即,则,即, 故的图象关于点对称,且;又为偶函数,则,则,即,故的图象关于点对称,且,又将代入得,则;令,由可得,则;同理可得,则;因为,,所以,则;,由此可得组成了以0为首项,为公差的等差数列,故,故答案为:520【点睛】关键点睛:解答此类关于抽象函数的性质类问题,要能综合利用函数的性质进行求解,比如函数的奇偶性和对称性以及周期性等,解答本题的关键就在于要根据函数的奇偶性推出函数的对称性,从而采用赋值法求值,发现规律,进而求解.16./【分析】第一空:通过图形关系得到的面积为定值,当时,面积最大,进而得到;第二空:通过设的中点为,得到,即为四面体的外接球球心;通过线面垂直的判定定理得到平面,进而计算四面体体积,结合等体积法求得内切球半径,即可得到答案.【详解】易得的面积为定值,又因为,显然当时,面积最大,即四面体的表面积最大,此时;当四面体的表面积最大时,易知四面体的表面积最大值为, 如图,设的中点为,易知,所以,即为四面体的外接球球心,四面体的外接球半径,因为,且,所以,即,因为,平面,,所以平面,四面体的体积为,又因为,所以,解得,所以.故答案为:;【点睛】思路点睛:本题考查棱锥表面积求法与球的内切、外接问题.通过图形关系的转化,结合相关的公式进而求解表面积;外接球常找出球心即可解得外接球半径,而内切球半径往往通过等体积法进行转化求解.17.(1);(2)3【分析】(1)利用求通项公式,再求证是首项、公差均为2的等差数列,进而求;(2)由题设易得,等比数列前n项和公式求,进而可得,裂项相消法化简已知不等式左侧,得恒成立,进而求最小值.【详解】(1)由题设,且,而,显然也满足上式,故,由,又,所以是首项、公差均为2的等差数列.综上,.(2)由,,则, 所以,而,故,即是公比为3的等比数列.所以,则,,而,所以,所以对都成立,所以,故,则正整数的最小值为3.18.(1)(2)【分析】(1)根据题意,由正切函数的和差角公式,代入计算,即可得到结果;(2)根据题意,由正弦定理结合三角形的面积公式可得,即可得到结果.【详解】(1)因为,故(2)由正弦定理:故 因为在锐角△中,所以,得,所以.19.(1)(2)【分析】(1)利用互斥事件的概率公式和古典摡型的概率计算公式,即可看求解;(2)由题意求得,然后利用导数求得函数的单调性与最值,即可求解.【详解】(1)解:根据题意,比赛结束后冠亚军恰好来自不同校区的概率是;(2)解:由题可知,,令,得,当时,,在上单调递增;当时,,在上单调递减.所以的最大值点.20.(1)证明见解析(2)【分析】(1)根据线面垂直的判定定理即可证明结论;(2)建立空间直角坐标系,利用空间角的向量求法求出平面BFN和平面ADE的夹角的余弦值的表达式,进行合理变形,结合二次函数的性质求得余弦的最值,即可求得答案.【详解】(1)证明:因为点N为线段AD的中点,且,所以,因为,且四边形ABCD为正方形,故,所以,而平面,故平面;(2)设正方形ABCD的中心为O,分别取的中点为,设点H为线段AD的中点,由(1)知四点共面,且平面,连接平面,故,又平面,故平面平面,且平面平面,由题意可知四边形为等腰梯形,故, 平面,故平面,故以O为坐标原点,为轴建立空间直角坐标系,    因为,则,又,故,设到底面的距离为h,四边形ABFE,CDEF为两个全等的等腰梯形,且,故,又,故,则,,,设,设平面的一个法向量为,则,令,设平面的一个法向量为,则,令,故,令,则,令,则,令,则在上单调递增,故当时,,当时,,故, 即平面BFN和平面ADE的夹角的余弦值得取值范围为.【点睛】难点点睛:本题考查了线面垂直的证明以及空间面面角的向量求法,解答的难点在于求出平面夹角的余弦值之后,要对其表达式进行变形,从而结合二次函数的单调性求得余弦的最值,从而得到其取值范围.21.(1)证明见解析(2)2【分析】(1)二次求导,结合零点存在性定理得到在区间上存在唯一极大值点;(2)结合第一问,分三种情况进行讨论,求得的零点个数.【详解】(1)由题意知,函数的定义域为,且,令,,所以,,令,,则,当时,,所以,即在上单调递减,又,,,则存在,使得,即存在,使得,所以当时,,当时,,所以为的唯一极大值点,故在区间上存在唯一极大值点;(2)由(1)知,,,①当时,由(1)知,在上单调递增,在上单调递减,又,,,所以存在,使得, 所以当,时,,单调递减,当时,,单调递增,又,,所以当时,有唯一的零点;②当时,,单调递减,又,所以存在,使得;③当时,,所以,则在没有零点;综上所述,有且仅有2个零点.【点睛】关键点点睛:判断函数的零点个数,要结合函数特征,利用导函数求出其单调性及极值和最值情况,结合零点存在性定理求出零点个数.22.(1)(2)存在满足题设(3)12,【分析】(1)根据椭圆定义,结合椭圆离心率公式进行求解即可;(2)根据椭圆弦长公式,结合线段中点坐标公式、一元二次方程根与系数关系进行求解即可;(3)根据点到直线距离公式、椭圆弦长公式,结合函数的单调性进行求解即可.【详解】(1)根据椭圆定义知周长为,依题意有,从而,故椭圆的方程为;(2)设:,,,由,因为所以,,所以,设线段中点坐标为,则,, 即设线段中点坐标为,所以线段的垂直平分线方程为:,令,当时,与轴重合,不合题意;当时,得,即点,所以,所以,即存在满足题设;(3)直线:,即,圆心到直线的距离为,则弦的长:,所以,设,则,且,所以,易知在单调递增,所以当,即时,,此时直线:.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2024-06-29 11:40:02 页数:22
价格:¥3 大小:1.46 MB
文章作者:180****8757

推荐特供

MORE