首页

福建省 2021-2022学年高二上学期期末考试数学试题(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/20

2/20

剩余18页未读,查看更多内容需下载

福州一中2021-2022学年第一学期期末考试高二数学选择性必修一模块试卷一、选择题:本题共8小题,每小题5分,共40分.在每小趣给曲的四个选项中,只有一项是符合题目要求的.1.已知等差数列{an}中,a4+a9=8,则S12=()A.96B.48C.36D.24【答案】B【解析】【分析】利用等差数列的性质求解即可.【详解】解:由等差数列的性质得.故选:B2.已知等比数列{an}中,,,则()A.B.1C.D.4【答案】D【解析】【分析】设公比为,然后由已知条件结合等比数列的通项公式列方程求出,从而可求出,【详解】设公比为,因为等比数列{an}中,,,所以,所以,解得,所以,得故选:D3.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1B.+=1C.+=1D.+=1【答案】C 【解析】【分析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C4.过点P(2,1)作直线l,使l与双曲线-y2=1有且仅有一个公共点,这样的直线l共有A.1条B.2条C.3条D.4条【答案】B【解析】【分析】利用几何法,结合双曲线的几何性质,得出符合条件的结论.【详解】由双曲线的方程可知其渐近线方程为y=±x,则点P(2,1)在渐近线y=x上,又双曲线的右顶点为A(2,0),如图所示.满足条件的直线l有两条:x=2,y-1=-(x-2).【点睛】该题考查的是有关直线与双曲线的公共点有一个的条件,结合双曲线的性质,结合图形,得出结果,属于中档题目.5.已知{an}是以10为首项,-3为公差的等差数列,则当{an}的前n项和Sn,取得最大值时,n=()A.3B.4C.5D.6【答案】B【解析】【分析】由题可得当时,,当时,,即得. 【详解】∵{an}是以10为首项,-3为公差的等差数列,∴,故当时,,当时,,故时,取得最大值.故选:B.6.已知数列{an}的前n项和为Sn,满足a1=1,-=1,则an=()A.2n-1B.nC.2n-1D.2n-1【答案】A【解析】【分析】由题可得,利用与的关系即求.【详解】∵a1=1,-=1,∴是以1为首项,以1为公差的等差数列,∴,即,∴当时,,当时,也适合上式,所以.故选:A.7.曲线为四叶玫瑰线,这种曲线在苜蓿叶型立交桥的布局中有非常广泛的应用,苜蓿叶型立交桥有两层,将所有原来需要穿越相交道路的转向都由环形匝道来实现,即让左转车辆行驶环道后自右侧切向汇入高速公路,四条环形匝道就形成了苜蓿叶的形状.下列结论正确的个数是()①曲线C关于点(0,0)对称;②曲线C关于直线y=x对称;③曲线C的面积超过4π. A.0B.1C.2D.3【答案】C【解析】【分析】根据图像或解析式即可判断对称性①②;估算第一象限内图像面积即可判断③.【详解】①将点(-x,-y)代入后依然为,故曲线C关于原点对称;②将点(y,x)代入后依然为,故曲线C关于y=x对称;③曲线C在四个象限的图像是完全相同的,不妨只研究第一象限的部分,∵,∴曲线C上离原点最远的点的距离为显然第一象限内曲线C的面积小于以为直径的圆的面积,又∵,∴第一象限内曲线C的面积小于,则曲线C的总面积小于4π.故③错误.故选:C.8.已知椭圆=1(a>b>0)的右焦点为F,椭圆上的A,B两点关于原点对称,|FA|=2|FB|,且·≤a2,则该椭圆离心率的取值范围是()A.(0,]B.(0,]C.,1)D.,1)【答案】B【解析】【分析】如图设椭圆的左焦点为E,根据题意和椭圆的定义可知,利用余弦定理求出,结合平面向量的数量积计算即可.【详解】由题意知,如图,设椭圆的左焦点为E,则, 因为点A、B关于原点对称,所以四边形为平行四边形,由,得,,在中,,所以,由,得,整理,得,又,所以.故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.关于双曲线-=1,下列说法正确的有()A.实轴长为4B.焦点为(,0)C.右焦点到一条渐近线的距离为4D.离心率为5【答案】AC【解析】【分析】求得,由此对选项逐一分析,从而确定正确选项.【详解】依题意,所以实轴长,A选项正确.焦点为,B选项错误. 右焦点到渐近线的距离为,C选项正确.离心率,D选项错误.故选:AC10.已知等差数列与等比数列的前n项和分别为,,则下列结论正确的有()A.数列是等比数列B.可能为C.数列是等差数列D.数列是等比数列【答案】AC【解析】【分析】设等差数列的公差为,根据等差数列的前项和公式及等差、等比数列的定义判断A、C,再根据计算判断B,利用特殊值判断D;【详解】解:设等差数列的公差为,对于A:,则数列为等比数列,故A正确;对于B:若,当时,,当时,,则,当时不满足,所以,故不是等比数列,故B错误;对于C:,则,则,故数列为等差数列,故C正确;对于D:令,则,则,则,,,显然,故D错误;故选:AC11.已知F是抛物线y2=2px(p>0)的焦点,过F的直线交抛物线于A,B两点,以线段AB为直径的圆交y轴于M,N两点,则下列说法正确的是() A.以AB为直径的圆与该抛物线的准线相切B.若抛物线上的点T(2,t)到点F的距离为4,则抛物线的方程为y2=4xC.为定值D.|MN|的最小值为【答案】ACD【解析】【分析】由抛物线的性质可得焦点的坐标及准线方程,设直线的方程,与抛物线联立求出两根之和及两根之积,求出弦长,进而可得以为直径的圆的半径,再求的中点到准线的距离,可判断A,由抛物线的性质可得到准线的距离,由题意可得的值,求出抛物线的方程,可判断B,求解的值可判断C,求出的表达式,当且仅当时,可求出的最小值,判断D,【详解】由题意可得抛物线的焦点,准线方程为,设直线的方程为,,则的中点,由,得,所以,所以,对于A,,则以为直径圆的半径为,的中点的横坐标为,所以的中点到准线的距离为,所以以为直径的圆的圆心到准线的距离等于圆的半径,所以以AB为直径的圆与该抛物线的准线相切,所以A正确,对于B,因为抛物线上的点T(2,t)到点F的距离为4,所以点T(2,t)到准线的距离为,得,则抛物线的方程为,所以B错误, 对于C,为定值,所以C正确,对于D,,所以当时,取得最小值,所以D正确,故选:ACD12.等差数列前n项和分别为,则下列说法正确的有()A.数列是递增数列B.C.D.【答案】AB【解析】【分析】结合数列的单调性,等差数列前项和公式对选项进行分析,从而确定正确选项.【详解】,所以是递增数列,A选项正确.,所以,B选项正确.,C选项错误.当时,,D选项错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13.在1和9之间插入三个数,使这五个数成等比数列,则中间三个数的积等于________.【答案】27【解析】 【分析】设公比为,利用已知条件求出,然后根据通项公式可求得答案【详解】设公比为,插入的三个数分别为,因为,所以,得,所以,故答案为:2714.已知双曲线的渐近线上两点A,B的中点坐标为(2,2),则直线AB的斜率是_________.【答案】##【解析】【分析】设出直线的方程,通过联立直线的方程和渐近线的方程,结合中点的坐标来求得直线的斜率.【详解】双曲线,,渐近线方程为,设直线的方程为,,由,由,所以,所以直线的斜率是.故答案为:15.椭圆x2+=1上的点到直线x+y-4=0的距离的最小值为_________.【答案】【解析】【分析】设与直线x+y-4=0平行的直线方程为,求出即得解. 【详解】解:设与直线x+y-4=0平行的直线方程为,所以,代入椭圆方程得,令或.当时,平行线间的距离为;当时,平行线间的距离为.所以最小距离为.故答案为:.16.圆锥曲线有良好的光学性质,光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点(如左图);光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出(如中图).封闭曲线E(如右图)是由椭圆C1:+=1和双曲线C2:-=1在y轴右侧的一部分(实线)围成.光线从椭圆C1上一点P0出发,经过点F2,然后在曲线E内多次反射,反射点依次为P1,P2,P3,P4,…,若P0,P4重合,则光线从P0到P4所经过的路程为_________. 【答案】【解析】【分析】结合椭圆、双曲线的定义以及它们的光学性质求得正确答案.【详解】椭圆;双曲线,双曲线和椭圆的焦点重合.根据双曲线的定义有,所以①,②,根据椭圆的定义由,所以路程.故答案为:四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等差数列满足,.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】 【分析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得.【小问1详解】解:设等差数列的公差为,则,可得,由可得,即,解得,,故.【小问2详解】解:,因此,.18.已知圆M经过点F(2,0),且与直线x=-2相切.(1)求圆心M的轨迹C的方程;(2)过点(-1,0)的直线l与曲线C交于A,B两点,若,求直线l的斜率k的取值范围.【答案】(1);(2).【解析】【分析】(1)设圆心,轨迹两点的距离公式列出方程,整理方程即可;(2)设直线l的方程和点A、B的坐标,直线方程联立抛物线方程,消去x得出关于y的一元二次方程,结合根的判别式和韦达定理表示出弦,进而列出不等式,解之即可.【小问1详解】设圆心,由题意知,,整理,得, 即圆心M的轨迹C方程为:;【小问2详解】由题意知,过点(-1,0)的直线l与抛物线C相交于点A、B,所以直线l的斜率存在且不为0,设直线,点,则,消去x,得,或,,同理可得,所以,即,由,得,解得,综上,或,所以或,即直线l的斜率的取值范围为.19.已知数列满足,设.(1)证明数列为等比数列,并求的通项公式;(2)设,求数列前项和.【答案】(1)证明见解析,;(2).【解析】【分析】(1)计算可得出,根据等比数列的定义可得出数列为等比数列,确定该数列的首项和公比,可求得数列的通项公式,进而可求得数列的通项公式;(2)求得,利用错位相减法可求得.【小问1详解】证明:对任意的,,则,则, 因为,则,,,以此类推可知,对任意的,,所以,,所以,数列是等比数列,且该数列的首项为,公比为,所以,,则.小问2详解】解:,则,,下式上式得.20.如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.【答案】(1)证明见解析 (2)存在【解析】【分析】(1)由已知可得∥,再由线面平行的判定可得∥平面,再由线面平行的性质可得∥,再由线面平行的判定可得结论,(2)由已知条件可证得两两垂直,所以以为原点,所在的直线分别为轴建立空间直角坐标系,利用空间向量求解【小问1详解】证明:因为,所以,所以∥,因为平面,平面,所以∥平面,因为平面,且平面面,所以∥,因为平面,平面,所以∥平面,【小问2详解】设的中点为,因为△PDC是等边三角形,所以,因为平面PDC⊥平面ABCD,且平面面,所以平面,因为平面,所以,所以以为原点,所在的直线分别为轴建立空间直角坐标系,如图所示,则,所以,假设存在这样的点,由已知得,则,所以,因为平面,所以平面的一个法向量为,设平面的一个法向量为,则,令,则,则 所以,整理得,解得(舍去),或,所以21.已知椭圆,斜率为的动直线与椭圆交于A,B两点,且直线与圆相切.(1)若,求直线的方程;(2)求三角形的面积的取值范围.【答案】(1)或(2)【解析】【分析】(1)设直线,利用圆心到直线的距离等于半径,即可得到方程,求出,即可得解;(2)设,,,利用圆心到直线的距离等于半径,得到,再联立直线与椭圆方程,消元列出韦达定理,利用弦长公式表示出 ,再根据及基本不等式求出,最后再计算直线斜率不存在时三角形的面积,即可得解;【小问1详解】解:圆,圆心为,半径;设直线,即,则,解得,所以或;【小问2详解】解:因为直线的斜率存在,设,,,即,则,所以,即,联立,消元整理得,所以,,所以所以 因为,所以,当且仅当,即时取等号,所以,当轴时,取,,则,此时,所以;22.已知A(-3,0),B(3,0),四边形AMBN的对角线交于点D(1,0),kMA与kMB的等比中项为,直线AM,NB相交于点P.(1)求点M的轨迹C的方程;(2)若点N也在C上,点P是否在定直线上?如果是,求出该直线,如果不是,请说明理由.【答案】(1);(2)点P在定直线x=9上.理由见解析.【解析】【分析】(1)设点,根据两点坐标距离公式和等比数列的等比中项的应用列出方程,整理方程即可;(2)设直线MN方程为:,点,联立双曲线方程消去x得到关于y的一元二次方程,根据韦达定理写出,利用两点坐标和直线的点斜式方程写出直线PA、PB,联立方程组,解方程组即可. 【小问1详解】设点,则,又,所以,整理,得,即轨迹M的方程C为:;【小问2详解】点P在定直线上.由(1)知,曲线C方程为:,直线MN过点D(1,0)若直线MN斜率不存在,则,得,不符合题意;设直线MN方程为:,点,则,消去x,得,有,,,,所以直线PA方程为:,直线PB方程为:,所以点P的坐标为方程组的解,有,即,整理,得,解得, 即点P在定直线上.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2024-04-26 13:40:02 页数:20
价格:¥3 大小:1.45 MB
文章作者:180****8757

推荐特供

MORE