首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破1球的切接问题命题点3球与多面体的棱相切的问题
备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破1球的切接问题命题点3球与多面体的棱相切的问题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/2
2
/2
充值会员,即可免费下载
文档下载
命题点3 球与多面体的棱相切的问题例3(1)[2023全国卷甲]在正方体ABCD-A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是 [22,23] .解析 由该正方体的棱与球O的球面有公共点,可知球O的半径应介于该正方体的棱切球(与各条棱均相切的球)半径和外接球半径之间(包含棱切球半径和外接球半径).设该正方体的棱切球半径为r,因为AB=4,所以2r=2×4,所以r=22;设该正方体的外接球半径为R,因为AB=4,所以(2R)2=42+42+42,所以R=23.所以球O的半径的取值范围是[22,23].(2)[2023广东省高州市二模]已知球O与正四面体A-BCD的各棱相切,且与平面α相切,若AB=1,则正四面体A-BCD表面上的点到平面α距离的最大值为 6+24 .解析 将正四面体A-BCD补形成正方体,如图所示.因为球O与正四面体A-BCD的各棱相切,所以球O即正方体的内切球,易知球心O为正方体体对角线的中点,如图所示.记正四面体A-BCD表面上的点到球心O的距离为d,球O的半径为r,则正四面体A-BCD表面上的点到平面α距离的最大值为d+r的最大值.设正方体棱长为a,则a2+a2=1,解得a=22,所以r=24,易知dmax=OA=12×3a2=64,所以正四面体A-BCD表面上的点到平面α距离的最大值为64+24=6+24.方法技巧破解此类球与多面体的棱相切问题的关键一是会转化,即能把所求的问题进行转化,例如,以正四面体的相对棱的中点的连线为直径的球,常转化为与几何体的棱相切的问题,从而把空间问题平面化;二是会求球的半径,能在转化后的平面问题中,寻找相关的量,求出球的半径或直径.训练3(1)[多选/2024福州市一检]已知正四棱柱ABCD-A1B1C1D1的底面边长为2,球O与正四棱柱的上、下底面及侧棱都相切.P为平面CDD1内一点,且直线BP与球O相切,则( BCD )A.球O的表面积为4πB.直线BD1与BP所成的角等于45°C.该正四棱柱的侧面积为162D.侧面ABB1A1与球面的交线长为2π解析 如图1,设球O与正四棱柱的下底面相切于点O1,连接OO1,则OO1⊥平面ABCD,连接O1A,OA,则∠OAO1为直线OA与平面ABCD所成的角.因为球O与正四棱柱的上、下底面及侧棱都相切,所以球O的半径R=OO1=O1A=2,所以球O的表面积S表=4π×2=8π,该正四棱柱的侧面积为4×2×22=162,故选项A错误,C正确. 依题意,BB1,BP均为球O的切线,BD1经过球心O,所以∠B1BD1=∠PBD1.连接B1D1,则B1D1=22=BB1,所以∠PBD1=∠B1BD1=45°,即直线BD1与BP所成的角为45°,选项B正确.对于选项D,记棱AA1的中点为F,则球O与棱AA1的切点为F,故侧面ABB1A1与球面的交线为过点F的圆,记矩形ABB1A1的中心为E,则侧面ABB1A1与球面的截面圆的圆心为E,如图2,连接EF,截面圆的半径r=EF=12AB=1,所以截面圆的周长为2π,即侧面ABB1A1与球面的交线长为2π,选项D正确.综上,选BCD.图1图2(2)[2023山西省朔州市大地学校高中部第四次月考]正四面体的内切球、棱切球(与各条棱均相切的球)及外接球的半径之比为 1∶3∶3 .解析 设正四面体S-ABC的棱长为1,外接球和内切球的半径分别为R,r,如图所示,设D为AB的中点,连接SD,CD,作SE⊥CD于点E,由正四面体的性质可知线段SE为正四面体S-ABC的高.在正三角形SAB中,SD=1-(12)2=32.同理,在正三角形ABC中,CD=32,则DE=13×CD=36,S△ABC=12×1×32=34,所以SE=SD2-DE2=(32)2-(36)2=63,则V四面体S-ABC=13S△ABC×SE=13×34×63=212.由正四面体的性质知,其内切球、棱切球、外接球的球心重合,且球心O在线段SE上,则R+r=OS+OE=SE=63,V四面体S-ABC=4×13S△ABC×r=4×13×34×r=33r=212,所以r=612,故R=64.连接OD,因为棱切球与棱AB相切,故其半径为OD=r2+DE2=(612)2+(36)2=24,故正四面体的内切球、棱切球及外接球的半径之比为612∶24∶64=1∶3∶3.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2024届高考数学一轮复习(新教材人教A版强基版)第七章立体几何与空间向量7.2球的切、接问题课件
第七章 §7.2 球的切、接问题[培优课]
第七章 §7.2 球的切、接问题[培优课]
第七章 §7.2 球的切、接问题[培优课]
备考2024届高考数学一轮复习好题精练第六章平面向量复数突破1平面向量中的综合问题
备考2024届高考数学一轮复习好题精练第六章平面向量复数突破1平面向量中的综合问题命题点1平面向量与其他知识的综合
备考2024届高考数学一轮复习好题精练第六章平面向量复数突破1平面向量中的综合问题命题点2和向量有关的最值范围问题
备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破1球的切接问题
备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破1球的切接问题命题点1外接球问题
备考2024届高考数学一轮复习好题精练第七章立体几何与空间向量突破1球的切接问题命题点2内切球问题
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-02-08 15:30:02
页数:2
价格:¥3
大小:146.60 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划