首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
湖南省长沙市长郡中学2023-2024学年高三上学期月考(四)数学试题(Word版附解析)
湖南省长沙市长郡中学2023-2024学年高三上学期月考(四)数学试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/21
2
/21
剩余19页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
大联考长郡中学2024届高三月考试卷(四)数学注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合,则()A.B.C.D.【答案】B【解析】【分析】根据交集的知识求得正确答案.【详解】由已知得.故选:B2.已知是虚数单位,若,则实数()A.2B.0C.D.【答案】A【解析】【分析】利用复数乘法运算法则,根据复数相等列方程组即可求.【详解】因为,,所以,解得.故选:A3.设随机变量,且,则()A0.75B.0.5C.0.3D.0.25 【答案】D【解析】【分析】利用对立事件的意义,结合正态分布列式计算即得.【详解】随机变量,显然,而,所以.故选:D4.已知,则下列结论正确的是()A.B.C.D.【答案】B【解析】【分析】利用1作为中间量,判断b、c的大小,利用换底公式判断a、b的大小.【详解】因为,即.故选:B.5.已知圆锥的高为3,若该圆锥的内切球的半径为1,则该圆锥的表面积为()A.B.C.D.【答案】C【解析】【分析】利用圆锥与其内切球的轴截面,由已知数据计算出圆锥底面半径和母线长,可求圆锥的表面积.【详解】圆锥与其内切球的轴截面如下图所示,由已知,可知,所以圆锥的轴截面为正三角形, 因为,所以圆锥底面圆半径,母线,则圆锥的表面积为.故选:C.6.已知角,且满足,则=()A.B.C.D.【答案】D【解析】【分析】根据题意,由条件可得的值,从而可得,即可得到结果.【详解】由已知得,∴,∵,∴.故选:D7.在等腰中,的外接圆圆心为,点在优弧上运动,则的最小值为()A.4B.2C.D.【答案】D【解析】【分析】根据题意,由正弦定理可得圆的外接圆直径,从而可得,代入计算,即可得到结果.【详解】由已知,所以圆的外接圆直径为,因为, 所以,所以,因为,即,所以时,取到最小值.故选:D.8.已知椭圆:的右焦点为,过点的直线交椭圆于两点,若的中点坐标为,则椭圆的方程为()A.B.C.D.【答案】A【解析】【分析】利用弦中点坐标由点差法即可计算出,利用焦点坐标即可得,即得出椭圆方程.【详解】根据题意设,代入椭圆方程可得;两式相减可得,整理可得;又因为的中点坐标为,可得;因此过两点的直线斜率为,又和的中点在直线上,所以,即,可得;又易知,且,计算可得; 所以椭圆的方程为,代入的中点坐标为,得,则其在椭圆内部,则此时直线与椭圆相交两点.故选:A二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.党的二十大报告提出,要加快发展数字经济,促进数字经济与实体经济的深度融合,数字化构建社区服务新模式成为一种时尚.某社区为优化数字化社区服务,问卷调查调研数字化社区服务的满意度,满意度采用计分制(满分100分),统计满意度绘制成如下频率分布直方图,图中.则下列结论正确的是()A.B.满意度计分的众数为80分C.满意度计分的分位数是85分D.满意度计分的平均分是76.5【答案】ACD【解析】【分析】根据频率之和为1即可求解A,根据众数,中位数以及平均数的计算即可分别求解BCD.【详解】由频率分布直方图可知,即,又,所以,所以选项正确;满意度计分的众数为75分,所以选项错误;前三组的频率之和为0.75,前四组的频率之和为,则分位数,故,满意度计分的分位数为85,所以选项正确;满意度计分的平均分为:分,所以选项D 正确.故选:ACD.10.已知函数的最大值为,则下列结论正确的是()A.函数的最小正周期为B.C.函数的图象关于直线对称D.函数在区间内有两个不同实根【答案】BD【解析】【分析】利用三角恒等变换化简,求出最大值,根据最大值为确定的值,然后利用正弦型函数的性质依次判断即可.【详解】因为,所以,又的最大值是,所以,又,所以,所以选项A错误,B正确;由于,因为,所以函数的图象关于点对称,所以选项错误;当时,,由,即,求得或,所以选项D正确.故选:BD. 11.已知数列满足,数列满足,记数列的前项和为,则下列结论正确的是()A.数列是等差数列B.CD.【答案】ABC【解析】【分析】由题意可得,再根据等差数列的定义及性质即可判断AB;求出数列和的通项,再利用裂项相消法即可求出,从而可判断CD.【详解】因为,所以,所以,且,所以数列是等差数列,且该数列的首项为1,公差为,所以,所以选项AB正确;因为,所以,所以,所以,所以选项C正确,D错误.故选:ABC.12.如图,在多面体中,底面是边长为的正方形, 平面,动点在线段上,则下列说法正确的是()AB.存在点,使得平面C.当动点与点重合时,直线与平面所成角的余弦值为D.三棱锥的外接球被平面所截取的截面面积是【答案】ABC【解析】【分析】由面面垂直的性质定理可判断选项A;由线面平行的判定定理和性质定理可判断选项B;由面面垂直的判定定理、面面垂直的性质及余弦定理可判断选项C;由截面是的外接圆及正弦定理可判断选项D.【详解】令,连接,令中点为,连接,如图所示:由底面是正方形可得:是的中点,且;由平面,平面,平面可得:平面平面,;由,可得:四边形为矩形.对于选项:由,平面平面,平面平面,平面,可得平面. 又平面,所以,故正确;对于选项:因为在矩形中,,所以四边形是平行四边形,则直线.因为平面平面,则平面.故当是线段中点时,直线平面,故正确;对于选项:因为平面,平面,所以平面平面,所以在平面内射影在直线上,直线与平面所成角为.在中,,故C正确;对于选项D:因为在中,,,则.由正弦定理得:的外接圆直径,则半径,圆面积为.因为三棱锥的外接球的球心在过点且与平面垂直的直线上,四边形为矩形,所以点F在三棱锥的外接球上.所以三棱锥的外接球被平面所截取的截面是的外接圆,因此三棱锥的外接球被平面所截取的截面面积是,故D错误.故选:.【点睛】关键点点睛:本题主要考查空间中线线垂直的证明、线面平行的证明、线面角的求法及球的截面问题.解题关键在于熟练灵活掌握空间线面位置关系的判断方法.选项D先判断出截面的形状,再利用正弦定理求出半径即可求解判断.三、填空题(本大题共4小题,每小题5分,共20分.)13.已知函数,则的值为__________.【答案】4 【解析】【分析】运用代入法,结合对数的运算性质进行求解即可.【详解】由题意可得,,所以.故答案为:414.2023年10月国庆节旅游黄金周期间,自驾游爱好者甲、乙、丁3家组团自驾去杭州旅游,3家人分别乘坐3辆车,沪昆高速杭州入口有共3个不同的窗口,则每个窗口恰好都有一位该团的自驾车在等候的概率为__________.【答案】【解析】【分析】根据给定条件,求出该团的3辆自驾车在3个窗口等候的基本事件总数,再求出3个窗口各有1辆车在等候的事件含有的基本事件数,利用古典概率公式计算得解.【详解】该团的3辆自驾车在3个窗口等候的基本事件总数为,3个窗口各有1辆车在等候的事件含有个基本事件,所以每个窗口恰好都有一位该团的自驾车在等候的概率为.故答案为:15.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为___________.【答案】##【解析】【分析】由得出,由定义结合勾股定理得出,再由勾股定理得出离心率.【详解】解:如图, 因为,则,设,则,则,由勾股定理可得,即,整理可得,因为,解得,所以,,,由勾股定理可得,即,整理可得,因此,该双曲线的离心率为.故答案为:16.已知关于不等式恰有3个不同的正整数解,则实数的取值范围是__________.【答案】【解析】【分析】由题意知,关于x的不等式恰有3个不同的正整数解.设函数,,作出函数图象,由图象观察,可得实数的k取值范围.【详解】当时,不等式有无数个正整数解,不满足题意;当时,当时,不等式恒成立,有无数个不同的正整数解,不满足题意;当时,不等式等价于,令,所以, 当时,,函数单调递减,当时,,函数单调递增,当时,,函数单调递减,又,结合单调性可知,当时,恒成立,而表示经过点的直线,由图像可知,关于的不等式恰有3个不同的正整数解,故只需满足以下条件:解得.则实数的取值范围是,故答案为:.【点睛】用数形结合思想解决不等式解的问题一般有以下几类:(1)解含参不等式:在解决含有参数不等式时,由于涉及参数,往往需要讨论,导致演算过程复杂,若利用数形结合的方法,问题将简单化;(2)确定参数范围:在确定不等式参数的范围时,几何图形更能使问题直观;(3)证明不等式:把证明的不等式赋予一定的几何意义,将复杂的证明问题明快解决.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,分别为内角的对边,且.(1)求角A的大小;(2)设角A的内角平分线交于点,若的面积为,求的值.【答案】(1)(2) 【解析】【分析】(1)利用正弦定理角化边,然后结合余弦定理可得;(2)根据化简整理可得.【小问1详解】由及正弦定理得:,即.由余弦定理得,又,所以.【小问2详解】由角的内角平分线交于点可知,,所以.18.已知等差数列的前项和为,且满足,数列满足.(1)证明:数列是等比数列,并求的通项公式;(2)已知数列满足求数列的前项和.【答案】(1)证明见解析;, (2)【解析】【分析】(1)设数列的公差为,根据题意求得和,得到,得到,再由,得到为等比数列,进而得到数列的通项公式;(2)由(1)得到,结合分组求和,即可求解.【小问1详解】解:依题意,设数列的公差为,因为,所以,则,因为,即,所以,所以,所以,即.所以,所以,又因为,所以,故数列是首项为,公比为的等比数列,所以,所以.【小问2详解】解:由(1)知,,可得,所以.19.如图,四棱柱中,底面为正方形,与交于点,平面平面与底面所成的角为. (1)求证:平面;(2)求平面与平面的夹角的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)过作于,利用面面垂直证明线面垂,再结合线面角证明为同一点即可;(2)建立空间直角坐标系,利用向量法求两个平面夹角的余弦值.【小问1详解】过作于,因为平面平面,又平面平面,平面,所以平面,所以为直线与平面所成的角,所以,,则,又因为底面为正方形,,所以,是中点,,可知同一点,所以平面.【小问2详解】因为底面是正方形,所以,以为原点,所在直线分别为轴建立空间直角坐标系. ,,,,则.又,所以,所以,设平面的法向量是,由令,则,得,因为,设平面的法向量为,所以令,则,得,所以,所以平面与平面的夹角的余弦值为.20.已知圆,动点在轴的右侧,到轴的距离比它到的圆心的距离小1.(1)求动点的轨迹的方程;(2)过圆心作直线与轨迹和圆交于四个点,自上而下依次为A,M,N,B,若,求及直线的方程.【答案】(1)(2),【解析】 【分析】(1)易得圆的半径,圆心,由题意得到点到定点的距离与到定直线的距离相等,再利用抛物线的定义求解;(2)由圆的半径为1,得到,再由,得到,易知直线的斜率不为,设直线,与抛物线方程联立,利用弦长公式求解.【小问1详解】化为,可得半径,圆心,因为动点在轴的右侧,到轴的距离比它到的圆心的距离小1,所以点到定点的距离与到定直线的距离相等,由抛物线的定义得的轨迹方程为;【小问2详解】如图所示:由圆的半径为1,可得,又,,当直线的斜率为时,直线与抛物线只有1个交点,不合题意;所以直线的斜率不为,可设直线,联立,恒成立,,因为, 所以,解得,所以直线的方程为.21.在上海举办的第五届中国国际进口博览会中,一款无导线心脏起搏器引起广大参会者的关注,成为了进博会的“明星展品”.体积仅有维生素胶囊大小,体积比传统心脏起搏器减小93%,重量仅约2克,拥有强大的电池续航能力,配合兼容1.5T/3.0T全身核磁共振扫描检查等创新功能.在起搏器研发后期,某企业快速启动无线充电器主控芯片生产,试产期每天都需同步进行产品检测,检测包括智能检测和人工检测,选择哪种检测方式的规则如下:第一天选择智能检测,随后每天由计算机随机等可能生成数字“0”和“1”,连续生成4次,把4次的数字相加,若和小于3,则该天的检测方式和前一天相同,否则选择另一种检测方式.(1)求该企业前三天的产品检测选择智能检测的天数X的分布列;(2)当地政府为了检查该企业是否具有一定的智能化管理水平,采用如下方案:设表示事件“第n天该企业产品检测选择的是智能检测”的概率,若恒成立,认为该企业具有一定的智能化管理水平,将给予该企业一定的奖励资金,否则将没有该项奖励资金.请问该企业能拿到奖励资金吗?请说明理由.【答案】(1)答案见解析(2)可以;理由见解析【解析】【分析】(1)根据题意,由条件可得的可能取值为,然后分别求出其所对应的概率,即可得到分布列.(2)根据题意,由条件可得是以为首项,为公比的等比数列,然后结合等比数列的通项公式即可得到结果.【小问1详解】设计算机4次生成的数字之和为,则,则,, 的可能取值为,则,,,所以的分布列为123【小问2详解】设表示事件第天该企业产品检测选择的是智能检测,表示事件第天该企业产品检测选择的是智能检测,由全概率公式可知则,,即,,且,所以是以为首项,为公比的等比数列,则,所以恒成立,所以该企业具有一定的智能化管理水平,能拿到奖金.22.已知函数,其中.(1)讨论函数的单调性;(2)当时,证明:.【答案】(1)答案见解析(2)证明见解析 【解析】【分析】(1)先求得,然后对进行分类讨论,从而求得的单调区间.(2)将要证明的不等式转化为,利用构造函数法、放缩法,结合多次求导来研究所构造函数的单调性,进而证得不等式成立.【小问1详解】因为,所以,当时,,函数在上单调递增;当时,由,得,函数在区间上单调递增,由,得,函数在区间上单调递减.【小问2详解】要证,即证,即证,设,故在上单调递增,又,所以,又因为,所以,所以,①当时,因为,所以;②当时,令,则,设,则,设,则,因为,所以,所以即在上单调递增,所以,所以在上单调递增, 所以,即,所以在上单调递增,,即.综上可知,当时,,即.【点睛】方法点睛;求解函数单调区间的步骤:(1)确定的定义域;(2)计算导数;(3)求出的根;
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
湖南省长沙市长郡中学2023-2024学年高三语文上学期月考(二)试题(Word版附解析)
湖南省长沙市长郡中学2023-2024学年高三物理上学期月考(二)试题(Word版附解析)
湖南省长沙市长郡中学2023-2024学年高三政治上学期月考(二)试卷(Word版附解析)
湖南省长沙市长郡中学2023-2024学年高三上学期月考(三)语文试卷(Word版附答案)
湖南省长沙市长郡中学2023-2024学年高三上学期月考(三)数学试卷(Word版附答案)
湖南省长沙市长郡中学2023-2024学年高三上学期月考(三)历史试题(解析版)
湖南省长沙市长郡中学2023-2024学年高三上学期月考(三)生物试题(解析版)
湖南省长沙市长郡中学2023-2024学年高三上学期月考(三)地理试题(解析版)
湖南省长沙市长郡中学2023-2024学年高三上学期月考(三)政治试题(解析版)
湖南省长沙市长郡中学2023-2024学年高三上学期月考(四)语文试卷(Word版附答案)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-12-30 02:40:07
页数:21
价格:¥2
大小:1.08 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划