首页

吉林省长春外国语学校2023-2024学年高三数学上学期9月月考试题(Word版附答案)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

长春外国语学校2023—2024学年上学期高三年级第一次月考数学试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页。考试结束后,将答题卡交回。注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,则A.B.C.D.2.函数,则A.B.C.1D.3.函数的图象在点(1,-1)处的切线方程为A.B.C.D.4.若随机变量,且,则(X=4)的值是A.B.C.D.5.在的展开式中,二项式系数的和是16,则展开式中项的系数A.15B.54C.12D.-546.已知,,且,若恒成立,则实数的最小值是A.B.C.D.7.某校组织一次认识大自然的活动,有5名同学参加,其中有3名男生、2名女生,现要从这5名同学中随机抽取3名同学去采集自然标本,抽取人中既有男生又有女生的抽取方法共有A.10种B.12种C.6种D.9种8.已知函数在上是增函数,则实数的取值范围是A.B.C.D.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.)9.已知函数,则A.B.的最小正周期为C.把向左平移可以得到函数D.在上单调递增10.已知是定义域为的偶函数,在上单调递减,且,那么下列结论中正确的是A.可能有三个零点B.C.D.11.已知函数的部分图象如图所示,则  A.在上单调递增B.C.D.的图象关于直线对称12.函数,,下列说法中,正确的是A.B.在单调递增 C.D.三、填空题(本题共4小题,每小题5分,共20分).13.已知幂函数在单调递减,则实数.14.已知函数,若关于的不等式的解为,则=,=.15.若(,=..16.函数是定义在R上的偶函数,是奇函数,且当时,,则.四、解答题(本题共6小题,满分70分,要求写出必要的解题过程).17.已知函数.(1)求的单调区间;(2)求的极值.18.已知函数.(1)求函数的最小正周期及单调增区间;(2)若,求函数的值域.19.近年来,国家鼓励德智体美劳全面发展,舞蹈课是学生们热爱的课程之一,某高中随机调研了本校2023年参加高考的90位考生是否喜欢跳舞的情况,经统计,跳舞与性别情况如下表:(单位:人)喜欢跳舞不喜欢跳舞女性2535男性525(1)根据表中数据并依据小概率值的独立性检验,分析喜欢跳舞与性别是否有关联?(2)用样本估计总体,用本次调研中样本的频率代替概率,从2023年本市考生中随机抽取3人,设被抽取的3人中喜欢跳舞的人数为X,求X的分布列及数学期望.附:,.0.100.050.0250.0100.0052.7063.8415.0246.6357.87920.设常数,函数.(1)若为偶函数,求的值;(2)若,求方程在区间.21.在中,角,,的对边分别为,,,已知.(1)求角A;(2)若的面积为1,求的最小值.22.已知函数,其中.(1)若,证明:;(2)设函数,若为的极大值点,求a的取值范围.长春外国语学校2023—2024学年上学期高三年级第一次月考数学答案一、选择题1.A2.B3.C4.A5.B6.B7.D8.A9.AD10.AC11.BCD12.ABD 二、填空题13.m=-214.-7;15.-216.1三、解答题17.(1)由题意得,,由,解得或,当时,,当,时,,增区间:,;减区间(-2,4)(2)当时取到极大值为,当取到极小值为.18.(1)增区间,(2)19.(1)零假设::喜欢跳舞与性别无关联,由题意,,依据小概率值的独立性检验,可推断不成立,即认为喜欢跳舞与性别有关联.(2)由题知,考生喜欢跳舞的概率,不喜欢跳舞的概率为X的可能取值为0,1,2,3,,,所以X的分布列如下:0123由,数学期望,方差.20.(1)∵,∴,∵为偶函数,∴,∴,∴,∴;(2)∵,∴,∴,∴,∵,∴,∴,∴,∴,k∈Z,∵,∴21.(1)由已知,,由正弦定理,所以,即,又,所以,解得.(2)由题,得,又(时取“=”) 所以,即最小值是,时取等号.22.(1)证明:若,则,且,则,令,得.在上,,单调递减;在上,,单调递增;故.(2),.当时,易得,所以由(1)可得,若,则,所以在上单调递增,这与为函数的极大值点相矛盾.若,令,则,又令,则对恒成立,所以在上单调递增.又,,因为,所以,因此存在唯一,使得,所以,在上,,单调递减.又,所以在上,,故单调递增;在上,,故单调递减.所以为函数的极大值点,满足题意.综上,a的取值范围为.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2023-10-08 20:19:01 页数:4
价格:¥3 大小:373.98 KB
文章作者:随遇而安

推荐特供

MORE