第六章 §6.3 等比数列
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期§6.3 等比数列考试要求 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.知识梳理1.等比数列有关的概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.(2)等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时,G2=ab.2.等比数列的通项公式及前n项和公式(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=a1qn-1.(2)等比数列通项公式的推广:an=amqn-m.(3)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn==.3.等比数列性质(1)若m+n=p+q,则aman=apaq,其中m,n,p,q∈N*.特别地,若2w=m+n,则aman=a,其中m,n,w∈N*.(2)ak,ak+m,ak+2m,…仍是等比数列,公比为qm(k,m∈N*).(3)若数列{an},{bn}是两个项数相同的等比数列,则数列{an·bn},{pan·qbn}和也是等比数列(b,p,q≠0).(4)等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn.(n为偶数且q=-1除外)(5)若或则等比数列{an}递增.若或则等比数列{an}递减.常用结论1.等比数列{an}的通项公式可以写成an=cqn,这里c≠0,q≠0.2.等比数列{an}的前n项和Sn可以写成Sn=Aqn-A(A≠0,q≠1,0).3.数列{an}是等比数列,Sn是其前n项和.(1)若a1·a2·…·an=Tn,则Tn,,,…成等比数列.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期(2)若数列{an}的项数为2n,则=q;若项数为2n+1,则=q,或=q.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)三个数a,b,c成等比数列的充要条件是b2=ac.( × )(2)当公比q>1时,等比数列{an}为递增数列.( × )(3)等比数列中所有偶数项的符号相同.( √ )(4)数列{an}为等比数列,则S4,S8-S4,S12-S8成等比数列.( × )教材改编题1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析 若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.2.设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6等于( )A.31B.32C.63D.64答案 C解析 根据题意知,等比数列{an}的公比不是-1.由等比数列的性质,得(S4-S2)2=S2·(S6-S4),即122=3×(S6-15),解得S6=63.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为________________.答案 1,3,9或9,3,1解析 设这三个数为,a,aq,则解得或∴这三个数为1,3,9或9,3,1.题型一 等比数列基本量的运算例1 (1)(2022·全国乙卷)已知等比数列{an}的前3项和为168,a2-a5=42,则a6等于( )成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期A.14B.12C.6D.3答案 D解析 方法一 设等比数列{an}的公比为q,易知q≠1.由题意可得即解得所以a6=a1q5=3,故选D.方法二 设等比数列{an}的公比为q,易知q≠1.由题意可得即解得所以a6=a1q5=3,故选D.(2)(2023·桂林模拟)朱载堉(1536~1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音的频率是最初那个音的2倍.设第二个音的频率为f1,第八个音的频率为f2.则等于( )A.B.C.D.4答案 A解析 设第一个音的频率为a,相邻两个音之间的频率之比为q,那么an=aqn-1,根据最后一个音的频率是最初那个音的2倍,得a13=2a=aq12,即q=,所以==q6=.思维升华 等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.跟踪训练1 (1)设正项等比数列{an}的前n项和为Sn,若S2=3,S4=15,则公比q等于( )A.2B.3C.4D.5答案 A解析 ∵S2=3,S4=15,∴q≠1,由题意,得得q2=4,又q>0,∴q=2.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期(2)在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是( )A.插入的第8个数为B.插入的第5个数是插入的第1个数的倍C.M>3D.N<7答案 D解析 设该等比数列为{an},公比为q,则a1=1,a13=2,故q12==2.插入的第8个数为a9=a1q8=,故A正确;插入的第5个数为a6=a1q5,插入的第1个数为a2=a1q,所以==q4=,故B正确;M===-1-,要证M>3,即证-1->3,即证>4,即证>,即证12>2,而12>6>2成立,故C正确;N=M+3.因为12>(1.4)6>(1.9)3>2,所以>,所以>5,成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期所以-1->4,即M>4,所以N=M+3>7,故D错误.题型二 等比数列的判定与证明例2 已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等比数列;②数列{Sn+a1}是等比数列;③a2=2a1.注:如果选择不同的组合分别解答,则按第一个解答计分.解 选①②作为条件证明③:设Sn+a1=Aqn-1(A≠0),则Sn=Aqn-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,an=Sn-Sn-1=Aqn-2(q-1),因为{an}是等比数列,所以=,解得q=2,所以a2=2a1.选①③作为条件证明②:因为a2=2a1,{an}是等比数列,所以公比q=2,所以Sn==a1(2n-1),即Sn+a1=a12n,因为=2,所以{Sn+a1}是等比数列.选②③作为条件证明①:设Sn+a1=Aqn-1(A≠0),则Sn=Aqn-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,an=Sn-Sn-1=Aqn-2(q-1),因为a2=2a1,所以A(q-1)=A,解得q=2,所以当n≥2时,an=Sn-Sn-1=Aqn-2(q-1)=A·2n-2=a1·2n-1,又因为=2(n≥2),且a2=2a1,所以{an}为等比数列.思维升华 等比数列的三种常用判定方法(1)定义法:若=q(q为非零常数,n∈N*)或=q(q为非零常数且n≥2,n∈N*),则{an}是等比数列.(2)等比中项法:若数列{an}中,an≠0且a=an·an+2(n∈N*),则{an}是等比数列.(3)前n项和公式法:若数列{an}的前n项和Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期}是等比数列.跟踪训练2 在数列{an}中,a+2an+1=anan+2+an+an+2,且a1=2,a2=5.(1)证明:数列{an+1}是等比数列;(2)求数列{an}的前n项和Sn.(1)证明 因为a+2an+1=anan+2+an+an+2,所以(an+1+1)2=(an+1)(an+2+1),即=.因为a1=2,a2=5,所以a1+1=3,a2+1=6,所以=2,所以数列{an+1}是以3为首项,2为公比的等比数列.(2)解 由(1)知,an+1=3·2n-1,所以an=3·2n-1-1,所以Sn=-n=3·2n-n-3.题型三 等比数列的性质例3 (1)(2023·黄山模拟)在等比数列{an}中,a1,a13是方程x2-13x+9=0的两根,则的值为( )A.B.3C.±D.±3答案 B解析 ∵a1,a13是方程x2-13x+9=0的两根,∴a1+a13=13,a1·a13=9,∴a1>0,a13>0,a1·a13=a2·a12=a=9,又数列{an}为等比数列,等比数列奇数项符号相同,可得a7=3,∴==3.(2)已知正项等比数列{an}的前n项和为Sn且S8-2S4=6,则a9+a10+a11+a12的最小值为______.答案 24解析 由题意可得S8-2S4=6,可得S8-S4=S4+6,由等比数列的性质可得S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2,综上可得a9+a10+a11+a12=S12-S8==S4++12≥24,当且仅当S4=6时等号成立.综上可得,a9+a10+a11+a12的最小值为24.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期思维升华 (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2023·六安模拟)在等比数列{an}中,若a1+a2=16,a3+a4=24,则a7+a8等于( )A.40B.36C.54D.81答案 C解析 在等比数列{an}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,∵a1+a2=16,a3+a4=24,∴a7+a8=(a3+a4)·2=24×2=54.(2)等比数列{an}共有奇数个项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1等于( )A.1B.2C.3D.4答案 C解析 ∵an=192,∴q====-2,又Sn==S奇+S偶,即=255+(-126),解得a1=3.(3)在等比数列{an}中,an>0,a1+a2+a3+…+a8=4,a1a2·…·a8=16,则++…+的值为( )A.2B.4C.8D.16答案 A解析 ∵a1a2…a8=16,∴a1a8=a2a7=a3a6=a4a5=2,∴++…+=+++=(a1+a8)+(a2+a7)+(a3+a6)+(a4+a5)=(a1+a2+…+a8)=2.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期课时精练1.(2023·岳阳模拟)已知等比数列{an}满足a5-a3=8,a6-a4=24,则a3等于( )A.1B.-1C.3D.-3答案 A解析 设an=a1qn-1,∵a5-a3=8,a6-a4=24,∴解得∴a3=a1q2=×32=1.2.数列{an}中,a1=2,am+n=aman,若ak+1+ak+2+…+ak+10=215-25,则k等于( )A.2B.3C.4D.5答案 C解析 令m=1,则由am+n=aman,得an+1=a1an,即=a1=2,所以数列{an}是首项为2,公比为2的等比数列,所以an=2n,所以ak+1+ak+2+…+ak+10=2k(a1+a2+…+a10)=2k×=2k+1×(210-1)=215-25=25×(210-1),解得k=4.3.若等比数列{an}中的a5,a2019是方程x2-4x+3=0的两个根,则log3a1+log3a2+log3a3+…+log3a2023等于( )A.B.1011C.D.1012答案 C解析 由题意得a5a2019=3,根据等比数列性质知,a1a2023=a2a2022=…=a1011a1013=a1012a1012=3,于是a1012=,则log3a1+log3a2+log3a3+…+log3a2023=log3(a1a2a3…a2023)=log3=.4.(2022·日照模拟)河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{an},则log2(a3·a5)的值为( )A.16B.12C.10D.8答案 B解析 由题意,得{an}是以2为公比的等比数列,∴S7==1016,127a1=1016,解得a1=8,∴log2(a3·a5)=log2(8×22×8×24)=12.5.(多选)已知{an}是各项均为正数的等比数列,其前n项和为Sn,且{Sn}是等差数列,则下列结论正确的是( )A.{an+Sn}是等差数列B.{an·Sn}是等比数列C.{a}是等差数列D.是等比数列答案 ACD解析 由{Sn}是等差数列,可得2(a1+a2)=a1+a1+a2+a3,∴a2=a3,∵{an}是各项均为正数的等比数列,∴a2=a2q,可得q=1.∴an=a1>0,∴an+Sn=(n+1)a1,∴数列{an+Sn}是等差数列,因此A正确;a=a,∴{a}是常数列,为等差数列,因此C正确;=a1>0,∴是等比数列,因此D正确;anSn=na,∴{an·Sn}不是等比数列,因此B不正确.6.已知数列{an}是等比数列,若a2=1,a5=,则a1a2+a2a3+…+anan+1(n∈N*)的最小值为( )A.B.1C.2D.3答案 C解析 由已知得数列{an}的公比满足q3==,解得q=,∴a1=2,a3=,故数列{anan+1}是首项为2,公比为=的等比数列,∴a1a2+a2a3+…+anan+1=成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期=∈,故选C.7.已知Sn是等比数列{an}的前n项和,且an>0,S1+a1=2,S3+a3=22,则公比q=________,S5+a5=________.答案 3 202解析 由题意得2a1=2,∴a1=1.由a1+a1q+2a1q2=22,得q=3或q=-,∵an>0,∴q=-不符合题意,故q=3,∴S5+a5=+1×34=202.8.已知数列{an}为等比数列,若数列{3n-an}也是等比数列,则数列{an}的通项公式可以为__________.(写出一个即可)答案 an=3n-1(答案不唯一)解析 设等比数列{an}的公比为q,令bn=3n-an,则b1=3-a1,b2=32-a1q,b3=33-a1q2,∵{bn}是等比数列,∴b=b1b3,即(32-a1q)2=(3-a1)(33-a1q2),可化为q2-6q+9=0,解得q=3,取a1=1,则an=3n-1.(注:a1的值可取任意非零实数).9.等比数列{an}中,a1=1,a5=4a3.(1)求数列{an}的通项公式;(2)记Sn为{an}的前n项和,若Sm=63,求m.解 (1)设数列{an}的公比为q,由题设得an=qn-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故an=(-2)n-1或an=2n-1(n∈N*).(2)若an=(-2)n-1,则Sn=.由Sm=63得(-2)m=-188,此方程没有正整数解.若an=2n-1,则Sn=2n-1.由Sm=63得2m=64,解得m=6.综上,m=6.10.Sn为等比数列{an}的前n项和,已知a4=9a2,S3=13,且公比q>0.(1)求an及Sn;(2)是否存在常数λ,使得数列{Sn+λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由题意可得解得a1=1,q=3,所以an=3n-1,Sn==.(2)假设存在常数λ,使得数列{Sn+λ}是等比数列.因为S1+λ=λ+1,S2+λ=λ+4,S3+λ=λ+13,成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期所以(λ+4)2=(λ+1)(λ+13),解得λ=,此时Sn+=×3n,则=3.故存在常数λ=,使得数列是等比数列.11.(多选)在数列{an}中,n∈N*,若=k(k为常数),则称{an}为“等差比数列”,下列关于“等差比数列”的判断正确的是( )A.k不可能为0B.等差数列一定是“等差比数列”C.等比数列一定是“等差比数列”D.“等差比数列”中可以有无数项为0答案 AD解析 对于A,k不可能为0,正确;对于B,当an=1时,{an}为等差数列,但不是“等差比数列”,错误;对于C,当等比数列的公比q=1时,an+1-an=0,分式无意义,所以{an}不是“等差比数列”,错误;对于D,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确.12.记Sn为等比数列{an}的前n项和,已知a1=8,a4=-1,则数列{Sn}( )A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项答案 A解析 根据题意,等比数列{an}中,a1=8,a4=-1,则q3==-,则q=-,则Sn===,若n为奇数,则Sn=,此时有S1>S3>…>Sn>;若n为偶数,则Sn=,此时有S2<S4<…<Sn<,成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期故S1最大,S2最小.13.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.答案 -9解析 {bn}有连续四项在{-53,-23,19,37,82}中,bn=an+1,则an=bn-1,{an}有连续四项在{-54,-24,18,36,81}中.又{an}是等比数列,等比数列中有负数项则q<0,且负数项为相隔两项,等比数列各项的绝对值递增或递减,按绝对值由小到大的顺序排列上述数值:18,-24,36,-54,81,相邻两项相除=-,=-,=-,=-,很明显,-24,36,-54,81是{an}中连续的四项,q=-或q=-(|q|>1,∴此种情况应舍),∴q=-,∴6q=-9.14.记Sn为数列{an}的前n项和,Sn=1-an,记Tn=a1a3+a3a5+…+a2n-1a2n+1,则an=________,Tn=________.答案 解析 由题意得a1=1-a1,故a1=.当n≥2时,由得an=-an+an-1,则=,故数列{an}是以为首项,为公比的等比数列,故数列{an}的通项公式为an=.由等比数列的性质可得a1a3=a,a3a5=a,…,a2n-1a2n+1=a,所以数列{a2n-1a2n+1}是以a=为首项,为公比的等比数列,则Tn=a+a+…+a==.15.将正整数按照如图所示方式排列:试问2024是表中第________行的第________个数.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期答案 11 1001解析 由题意得第n行有2n-1个数,前10行共有20+2+22+23+24+25+26+27+28+29==1023(个)数,前11行共有20+2+22+23+24+25+26+27+28+29+210==2047(个)数,故2024在表中第11行,又表中第11行有210=1024(个)数,故2024是表中第11行的第1001个数.16.(2023·泰安模拟)已知等比数列{an}的前n项和为Sn,an>0,4S1+S2=S3.(1)求数列{an}的公比q;(2)对于∀n∈N*,不等式+n2+≥6n+t恒成立,求实数t的最大值.解 (1)由4S1+S2=S3,得4a1+a1+a2=a1+a2+a3,整理得4a1=a3,所以4a1=a1q2.因为a1≠0,所以q2=4,由题意得q>0,所以q=2.(2)由(1)得Sn==a1(2n-1),an=a1·2n-1,所以=.所以不等式+n2+≥6n+t恒成立,等价于+n2+≥6n+t恒成立,所以t≤+n2-6n+.令f(n)=+n2-6n+=(n-3)2-.当n=1时,f(1)=4-=;当n=2时,f(2)=1-=;当n≥3时,f(n)单调递增,所以f(n)≥f(3)=-.所以t≤-,成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期故实数t的最大值为-.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)