第八章 §8.8 直线与圆锥曲线的位置关系
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期§8.8 直线与圆锥曲线的位置关系考试要求 1.了解直线与圆锥曲线位置关系的判断方法.2.掌握直线被圆锥曲线所截的弦长公式.3.能利用方程及数形结合思想解决焦点弦、中点弦问题.知识梳理1.直线与圆锥曲线的位置判断将直线方程与圆锥曲线方程联立,消去y(或x),得到关于x(或y)的一元二次方程,则直线与圆锥曲线相交⇔Δ>0;直线与圆锥曲线相切⇔Δ=0;直线与圆锥曲线相离⇔Δ<0.特别地,①与双曲线渐近线平行的直线与双曲线相交,有且只有一个交点.②与抛物线的对称轴平行的直线与抛物线相交,有且只有一个交点.2.弦长公式已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|==|x1-x2|=或|AB|=|y1-y2|=.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)过点的直线一定与椭圆+y2=1相交.( √ )(2)直线与抛物线只有一个公共点,则该直线与抛物线相切.( × )(3)与双曲线渐近线平行的直线一定与双曲线有公共点.( √ )(4)圆锥曲线的通径是所有的焦点弦中最短的弦.( √ )教材改编题1.直线y=kx+2与椭圆+=1有且只有一个交点,则k的值是( )A.B.-成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期C.±D.±答案 C解析 由得(2+3k2)x2+12kx+6=0,由题意知Δ=(12k)2-4×6×(2+3k2)=0,解得k=±.2.已知直线l:y=x-1与抛物线y2=4x交于A,B两点,则线段AB的长是( )A.2B.4C.8D.16答案 C解析 联立消去y并整理得x2-6x+1=0,设A(x1,y1),B(x2,y2),则x1+x2=6,x1x2=1,所以|AB|==×=8.3.已知点A,B是双曲线C:-=1上的两点,线段AB的中点是M(3,2),则直线AB的斜率为( )A.B.C.D.答案 D解析 设A(x1,y1),B(x2,y2),∵点A,B是双曲线C上的两点,∴-=1,-=1,两式相减得=,∵M(3,2)是线段AB的中点,∴x1+x2=6,y1+y2=4,∴=,∴kAB==.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期题型一 直线与圆锥曲线的位置关系例1 (1)若直线mx+ny=9和圆x2+y2=9没有交点,则过点(m,n)的直线与椭圆+=1的交点有( )A.1个B.至多1个C.2个D.0个答案 C解析 因为直线mx+ny=9和圆x2+y2=9没有交点,所以>3,即m2+n2<9,所以+≤+<1,即点(m,n)在椭圆+=1内,所以过点(m,n)的直线与椭圆+=1的交点有2个.(2)(多选)已知直线y=x与双曲线-=1(a>0,b>0)无公共点,则双曲线的离心率可能为( )A.1B.C.D.答案 BC解析 双曲线的一条渐近线为y=x,因为直线y=x与双曲线无公共点,故有≤1.即==e2-1≤1,所以e2≤2,所以1<e≤.思维升华 (1)直线与双曲线只有一个交点,包含直线与双曲线相切或直线与双曲线的渐近线平行.(2)直线与抛物线只有一个交点包含直线与抛物线相切、直线与抛物线的对称轴平行(或重合).跟踪训练1 (1)(2023·梅州模拟)抛物线C:y2=4x的准线为l,l与x轴交于点A,过点A作抛物线的一条切线,切点为B,则△OAB的面积为( )A.1B.2C.4D.8答案 A成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期解析 ∵抛物线C:y2=4x的准线为l,∴l的方程为x=-1,A(-1,0),设过点A作抛物线的一条切线为x=my-1,m>0,由得y2-4my+4=0,∴Δ=(-4m)2-4×4=0,解得m=1,∴y2-4y+4=0,解得y=2,即yB=2,∴△OAB的面积为×1×2=1.(2)已知双曲线C:-=1(a>0,b>0),经过双曲线C的右焦点F,且倾斜角为60°的直线l与双曲线右支有两个交点,则双曲线离心率的取值范围为________.答案 (1,2)解析 ∵直线l的斜率kl=tan60°=,双曲线的渐近线方程为y=±x,则<,∴e==<2,故1<e<2.题型二 弦长问题例2 (2021·新高考全国Ⅱ)已知椭圆C的方程为+=1(a>b>0),右焦点为F(,0),且离心率为.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线MN与曲线x2+y2=b2(x>0)相切.证明:M,N,F三点共线的充要条件是|MN|=.(1)解 由题意得,椭圆半焦距c=且e==,所以a=,成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期又b2=a2-c2=1,所以椭圆C的方程为+y2=1.(2)证明 由(1)得,曲线为x2+y2=1(x>0),当直线MN的斜率不存在时,直线MN:x=1,不符合题意;当直线MN的斜率存在时,设M(x1,y1),N(x2,y2),必要性:若M,N,F三点共线,可设直线MN:y=k(x-),即kx-y-k=0,由直线MN与曲线x2+y2=1(x>0)相切可得=1,解得k=±1,联立可得4x2-6x+3=0,所以x1+x2=,x1x2=,所以|MN|=·=,所以必要性成立;充分性:设直线MN:y=kx+m(km<0),即kx-y+m=0,由直线MN与曲线x2+y2=1(x>0)相切可得=1,所以m2=k2+1,联立可得(1+3k2)x2+6kmx+3m2-3=0,所以x1+x2=-,x1x2=,所以|MN|=·==·=,化简得3(k2-1)2=0,所以k=±1,所以或所以直线MN:y=x-或y=-x+,所以直线MN过点F(,0),M,N,F三点共线,充分性成立,所以M,N,F成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期三点共线的充要条件是|MN|=.思维升华 (1)弦长公式不仅适用于圆锥曲线,任何两点的弦长都可以用弦长公式求.(2)抛物线的焦点弦的弦长应选用更简捷的弦长公式|AB|=x1+x2+p.(3)设直线方程时应注意讨论是否存在斜率.跟踪训练2 已知焦点在x轴上的椭圆C:+=1(a>b>0),短轴长为2,椭圆左顶点A到左焦点F1的距离为1.(1)求椭圆C的标准方程;(2)设椭圆的右顶点为B,过F1的直线l与椭圆C交于点M,N,且S△BMN=,求直线l的方程.解 (1)由得所以椭圆C的标准方程为+=1.(2)由题意知,直线的斜率存在且不为0,F1(-1,0),B(2,0),设直线l的方程为x=my-1,M(x1,y1),N(x2,y2),由得(3m2+4)y2-6my-9=0,即y1+y2=,y1y2=.又S△BMN=|BF1|·|y1|+|BF1|·|y2|=|BF1|·|y1-y2|=|BF1|·==,解得m=±1,所以直线l的方程为x-y+1=0或x+y+1=0.题型三 中点弦问题例3 (2023·衡水模拟)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,短轴顶点分别为M,N,四边形MF1NF2的面积为32.(1)求椭圆C的标准方程;(2)直线l交椭圆C于A,B两点,若AB的中点坐标为(-2,1),求直线l的方程.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期解 (1)因为离心率e==,所以a=c,因为a2=b2+c2,所以b=c.因为四边形MF1NF2的面积为32,所以2bc=32,所以b=c=4,a=4,故椭圆C的标准方程为+=1.(2)由题意得,直线l的斜率存在.设A(x1,y1),B(x2,y2),则两式相减得+=0,所以=-·.因为AB的中点坐标为(-2,1)在椭圆内部,所以=1,所以直线l的斜率为1,故直线l的方程为y-1=x+2,即x-y+3=0.思维升华 (1)解决圆锥曲线“中点弦”问题的思路①根与系数的关系法:联立直线和圆锥曲线的方程得到方程组,消元得到一元二次方程后,由根与系数的关系及中点坐标公式求解.②点差法:设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1),B(x2,y2),将这两点坐标分别代入圆锥曲线的方程,并对所得两式作差,得到一个与弦AB的中点和直线AB斜率有关的式子,可以大大减少计算量.(2)点差法常用结论已知A(x1,y1),B(x2,y2)为圆锥曲线E上的两点,AB的中点为C(x0,y0),直线AB的斜率为k.若E的方程为+=1(a>b>0),则k=-·;若E的方程为-=1(a>0,b>0),则k=·;若E的方程为y2=2px(p>0),则k=.跟踪训练3 (1)(2022·石家庄模拟)已知倾斜角为的直线与双曲线C:-=1(a>0,b>0),相交于A,B两点,M(1,3)是弦AB的中点,则双曲线的渐近线方程为________.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期答案 y=±x解析 设A(x1,y1),B(x2,y2),则=1,=3,=1,由两式相减可得-=0,则-=0,即a2=3b2,则a=b,则=,故双曲线的渐近线方程为y=±x.(2)已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1,若抛物线C上存在关于直线l:x-y-2=0对称的不同的两点P和Q,则线段PQ的中点坐标为( )A.(1,-1)B.(2,0)C.D.(1,1)答案 A解析 因为焦点到准线的距离为p,则p=1,所以y2=2x.设点P(x1,y1),Q(x2,y2).则则(y1-y2)(y1+y2)=2(x1-x2),∴kPQ=,又∵P,Q关于直线l对称,∴kPQ=-1,即y1+y2=-2,∴PQ中点的纵坐标为=-1,又∵PQ的中点在直线l上,∴PQ中点的横坐标为=(-1)+2=1.∴线段PQ的中点坐标为(1,-1).课时精练1.已知直线l:kx+y+1=0,椭圆C:+=1,则直线l与椭圆C的位置关系是( )成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期A.相离B.相切C.相交D.无法确定答案 C解析 由直线l:kx+y+1=0,得直线l过定点(0,-1),因为+<1,所以该点在椭圆C:+=1内部.所以直线l与椭圆C相交.2.(2023·长春模拟)直线l过抛物线C:y2=2px(p>0)的焦点,且与C交于A,B两点,若使|AB|=2的直线l有且仅有1条,则p等于( )A.B.C.1D.2答案 C解析 由抛物线的对称性知,要使|AB|=2的直线l有且仅有1条,则AB必须垂直于x轴,故A,B两点坐标为,代入抛物线方程可解得p=1.3.已知直线l的方程为y=kx-1,双曲线C的方程为x2-y2=1.若直线l与双曲线C的右支交于不同的两点,则实数k的取值范围是( )A.(-,)B.[1,)C.[-,]D.(1,)答案 D解析 联立整理得(1-k2)x2+2kx-2=0,因为直线y=kx-1与双曲线x2-y2=1的右支交于不同的两点,所以解得1<k<,所以实数k的取值范围为(1,).4.(2022·哈尔滨模拟)已知A,B分别是椭圆C:+y2=1的右顶点和上顶点,P为椭圆C上一点,若△PAB的面积是-1,则P点的个数为( )A.0B.2C.3D.4答案 C解析 由C:+y2=1可得a=2,b=1,所以A(2,0),B(0,1),|AB|=,成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期所以直线AB的方程为y=-x+1,设过点P与直线AB平行的直线l:y=-x+t,则直线l与直线AB的距离d==|t-1|,因为点P为直线l与椭圆的交点,所以点P到直线AB的距离为d,因为△PAB的面积是-1,可得S△PAB=×|AB|×d=××|t-1|=-1,解得t=或t=2-,当t=时,由可得(x-)2=0,解得此时P,当t=2-时,由可得x2+(2-4)x+10-8=0,因为Δ=(2-4)2-4(10-8)=16(-1)>0,此时直线l与椭圆有2个交点,此时有2个P点,所以共有3个P点.5.(多选)已知直线l:x=ty+4与抛物线C:y2=4x交于A(x1,y1),B(x2,y2)两点,O为坐标原点,直线OA,OB的斜率分别记为k1,k2,则( )A.y1y2为定值B.k1k2为定值C.y1+y2为定值D.k1+k2+t为定值答案 ABD解析 由得y2-4ty-16=0,则对于A,y1y2=-16为定值,故A正确;对于B,k1k2====-1为定值,故B正确;对于C,y1+y2=4t,不为定值,故C错误;对于D,k1+k2+t=++t=+t=+t=+t成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期=+t=-t+t=0为定值,故D正确.6.(多选)已知椭圆C:+=1(a>b>0)的左、右焦点分别是F1,F2,其中|F1F2|=2c.直线l:y=k(x+c)(k∈R)与椭圆交于A,B两点,则下列说法中正确的是( )A.△ABF2的周长为4aB.若AB的中点为M,则kOM·k=C.若·=3c2,则椭圆的离心率的取值范围是D.若|AB|的最小值为3c,则椭圆的离心率e=答案 AC解析 由直线l:y=k(x+c)过点(-c,0),知弦AB过椭圆的左焦点F1.所以△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=4a,所以A正确;设A(x1,y1),B(x2,y2),则M,kOM=,k=,所以kOM·k=·=,由①-②得+=0,所以=-,则kOM·k==-,所以B错误;=(-c-x1,-y1),=(c-x1,-y1),所以·=x-c2+y=x+a2-2c2∈[a2-2c2,a2-c2],则a2-2c2≤3c2≤a2-c2,可得e=∈,所以C正确;成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期因为过焦点的弦中通径最短,则|AB|的最小值为通径,则有=3c,即2a2-3ac-2c2=0,解得a=2c,所以e==,所以D错误.7.椭圆C:+=1(a>b>0)的左、右焦点分别是F1,F2,斜率为的直线l过左焦点F1且交C于A,B两点,且△ABF2内切圆的周长是2π,若椭圆的离心率为,则|AB|=________.答案 4解析 如图所示,由椭圆定义可得|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,则△ABF2的周长为4a,设A(x1,y1),B(x2,y2),△ABF2内切圆的半径为r,又△ABF2内切圆的周长是2π,故2π=2πr,则r=1,由题意得×4a×r=×2c×|y1-y2|,得|y1-y2|===4,所以|AB|=|y1-y2|=4.8.(2023·保定模拟)已知抛物线C:y2=2px(p>0)的焦点为F,过F作斜率为的直线l与C交于M,N两点,若线段MN中点的纵坐标为,则F到C的准线的距离为________.答案 5解析 设M(x1,y1),N(x2,y2),则y=2px1,y=2px2,两式相减得y-y=2px1-2px2,即(y1-y2)(y1+y2)=2p(x1-x2),因为M,N两点在斜率为的直线l上,所以=,所以由(y1-y2)(y1+y2)=2p(x1-x2)得(y1+y2)=2p,成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期因为线段MN中点的纵坐标为,所以y1+y2=2,则×2=2p,p=5,所以F到C的准线的距离为5.9.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,长轴长为4.(1)求椭圆C的标准方程;(2)已知直线l过定点E,若椭圆C上存在两点A,B关于直线l对称,求直线l的斜率k的取值范围.(1)解 因为椭圆的离心率为e==,长轴长为2a=4,解得a=2,c=1,则b2=3,所以椭圆C的标准方程是+=1.(2)易知直线的斜率存在,设直线l的方程为y=k,A(x1,y1),B(x2,y2),当直线l的斜率k=0时,易得在椭圆C上有无数对A,B关于直线y=0对称;当k≠0时,有kAB==-,AB中点的坐标为(x0,y0),则两式相减得3(x1+x2)(x1-x2)=-4(y1+y2)(y1-y2),即3kx0=4y0,又y0=k,解得x0=1,y0=,因为线段AB的中点在椭圆内部,所以+<1,即+<1,解得-2<k<0或0<k<2,综上,直线l的斜率k的取值范围为(-2,2).10.已知双曲线C:-=1(a>0,b>0)的两个焦点分别为F1(-2,0),F2(2,0),点P(5,)在双曲线C上.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期(1)求双曲线C的方程;(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C交于不同的两点A,B,若△OAB的面积为2,求直线l的方程.解 (1)依题意,c=2,所以a2+b2=4,则双曲线C的方程为-=1(0<a2<4),将点P(5,)代入上式,得-=1,解得a2=50(舍去)或a2=2,故所求双曲线的方程为-=1.(2)依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,得(1-k2)x2-4kx-6=0.因为直线l与双曲线C交于不同的两点A,B,所以解得(*)设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=-,所以|AB|=·=·.又原点O到直线l的距离d=,所以S△OAB=d·|AB|=××·=.又S△OAB=2,即=1,所以k4-k2-2=0,解得k=±,满足(*).故满足条件的直线l有两条,其方程分别为y=x+2和y=-x+2.11.(2022·六安模拟)已知椭圆具有如下性质:若椭圆的方程为+=1(a>b>0),则在椭圆上一点A(x0,y0)处的切线方程为+=1,试运用该性质解决以下问题:椭圆C1:+y2成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期=1,O为坐标原点,点B为C1在第一象限中的任意一点,过B作C1的切线l,l分别与x轴和y轴的正半轴交于C,D两点,则△OCD面积的最小值为( )A.1B.C.D.2答案 C解析 设B(x1,y1),(x1>0,y1>0),由题意得,过点B的切线l的方程为+y1y=1,令y=0,可得C,令x=0,可得D,所以△OCD面积S=××=,又点B在椭圆上,所以+y=1,所以S===+≥2=,当且仅当=,即x1=1,y1=时等号成立,所以△OCD面积的最小值为.12.已知抛物线C:y2=4x的焦点为F,准线为l,过点F的直线与C交于A,B两点(点A在x轴上方),过A,B分别作l的垂线,垂足分别为M,N,连接MF,NF.若|MF|=|NF|,则直线AB的斜率为________.答案 解析 如图,由题意得|AF|=|AM|,|BF|=|BN|,所以∠AMF=∠AFM=∠MFO,∠BNF=∠BFN=∠NFO,因为∠AFM+∠MFO+∠BFN+∠NFO=π,所以∠MFO+∠NFO=,所以MF⊥NF,成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期又|MF|=|NF|,所以∠NMF=,所以∠MFO=∠AFM=,故∠AFx=,所以直线AB的斜率为tan =.13.(2022·济南模拟)已知抛物线C:y2=4x,圆F:(x-1)2+y2=1,直线l:y=k(x-1)(k≠0)自上而下顺次与上述两曲线交于M1,M2,M3,M4四点,则下列各式结果为定值的是( )A.|M1M2|·|M3M4|B.|FM1|·|FM4|C.|M1M3|·|M2M4|D.|FM1|·|M1M2|答案 A解析 如图,分别设M1,M2,M3,M4四点的横坐标为x1,x2,x3,x4,由y2=4x得焦点F(1,0),准线l0:x=-1,由定义得,|M1F|=x1+1,又|M1F|=|M1M2|+1,所以|M1M2|=x1,同理|M3M4|=x4,由消去y,整理得k2x2-(2k2+4)x+k2=0(k≠0),设M1(x1,y1),M4(x4,y4),则x1x4=1,即|M1M2|·|M3M4|=1.14.(2022·新高考全国Ⅰ)已知椭圆C:+=1(a>b>0),C的上顶点为A,两个焦点为F1,F2,离心率为.过F1且垂直于AF2的直线与C交于D,E两点,|DE|=6,则△ADE的周长是________.答案 13解析 如图,连接AF1,DF2,EF2,成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期因为C的离心率为,所以=,所以a=2c,所以b2=a2-c2=3c2.因为|AF1|=|AF2|=a=2c=|F1F2|,所以△AF1F2为等边三角形,又DE⊥AF2,所以直线DE为线段AF2的垂直平分线,所以|AD|=|DF2|,|AE|=|EF2|,且∠EF1F2=30°,所以直线DE的方程为y=(x+c),代入椭圆C的方程+=1,得13x2+8cx-32c2=0.设D(x1,y1),E(x2,y2),则x1+x2=-,x1x2=-,所以|DE|====6,解得c=,所以a=2c=,所以△ADE的周长为|AD|+|AE|+|DE|=|DF2|+|EF2|+|DE|=4a=13.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)