首页

第三章圆8圆内接正多边形教案(北师大版九下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

8圆内接正多边形【知识与技能】1.掌握圆内接正多边形、外接圆、中心角、边心距的概念.2.正多边形的画法.【过程与方法】通过作图的过程,提高学生的几何语言表达能力和合情推理能力.【情感态度】在学生动手操作的过程中,增强学生的数学应用意识,提高学生学习数学的兴趣和积极性,培养学生主动探索的精神,培养学生合作交流和创新意识.【教学重点】圆内接正多边形、外接圆、中心角、边心距的概念.【教学难点】圆内接正多边形、外接圆、中心角、边心距的概念.一、情景导入,初步认知请同学们回答下面两个问题:1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形是否具有对称轴、是不是中心对称图形?其对称轴有几条,对称中心是哪一点?【教学说明】复习旧知识,为本节课的学习作准备.二、思考探究,获取新知1.画出圆的内接正五边形.4 我们前面已经学习了,圆的基本性质,知道点O是圆的圆心,OA、OB是圆的半径,角AOB是圆的圆心角.这个图形中还包含哪些知识呢?顶点都在同一个圆上的正多边形叫做圆内接正多边形,这个圆叫做该正多边形的外接圆.圆心O是这个正五边形的中心;∠AOB是这个正五边形的中心角;OH是这个正五边形的边心距.【教学说明】学生观察圆的内接正五边形,从而得出相关概念.2.怎样画特殊的正多边形?【归纳结论】利用同圆中相等的圆心角所对的弧相等,作相等的圆心角就可以等分圆,从而作出相应的正多边形.三、运用新知,深化理解1.见教材P97例题.2.正三角形的高、外接圆半径、边心距之比为()A.3:2:1B.4:3:2B.4:2:1D.6:4:3解析:设正三角形的边长为a,则高为,外接圆半径为,边心距为,所以它们之比为3:2:1.答案:A3.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,B.,3C.6,3D.,解析:∵正方形的边长为6,∴AB=3,又∵∠AOB=45°,∴OB=3,∴AO=答案:B.4.已知⊙O和⊙O上的一点A.(1)作⊙O的内接正方形ABCD和内接正六边形AEFCGH;(2)在(1)题的作图中,如果点E在弧AD上,求证:DE是⊙O内接正十二边形的一边.4 分析:求作⊙O的内接正六边形和正方形,依据定理应将⊙O的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE是⊙O内接正十二边形的一边,由定理知,只需证明DE所对圆心角等于360°÷12=30°.解:(1)作法:①作直径AC;②作直径BD丄AC;③依次连结A、B、C、D四点,四边形ABCD即为⊙O的内接正方形;④分别以A、C为圆心,OA长为半径作弧,交⊙O于E、H、F、G;⑤顺次连结A、E、F、C、G、H各点.六边形AEFCGH即为⊙O的内接正六边形(2)证明:连结OE、DE.∵∠AOD==90°∠AOE==60°.∴∠DOE=∠AOD=∠AOE=30°.∴DE为⊙O的内接正十二边形的一边.【教学说明】教师出示问题,学生可独立完成,也可小组合作完成.四、师生互动,课堂小结谈谈你本节课的收获或体会:知识、方法、反思、猜想、交流、愉快、困惑、生活.4 1.布置作业:教材“习题3.10”中第1、2题.2.完成练习册中本课时的练习.本节课的教学坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,以“引导——探究——发现”教学法为主,辅之直观演示、讨论交流,让学生真正动手操作,动脑思考,动口交流,动心关注.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-29 20:50:02 页数:4
价格:¥1 大小:207.00 KB
文章作者:随遇而安

推荐特供

MORE