首页

第一章三角形的证明1等腰三角形第2课时等边三角形的性质教案(北师大版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

第2课时等边三角形的性质【知识与技能】进一步熟悉证明的基本步骤和书写格式,体会证明的必要性【过程与方法】把等腰三角形与等边三角形的性质进行比较,体会等腰三角形和等边三角形的相同之处和不同之处.【情感态度】体验数学活动中的探索与创造,感受数学的严谨性【教学重点】等腰三角形、等边三角形的相关性质.【教学难点】等腰三角形、等边三角形的相关性质的应用.一.情景导入,初步认知在回忆上节课等腰三角形性质的基础上,提出问题:在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?【教学说明】通过提问的形式,复习上节课学习的内容,提高学生的学习兴趣.二.思考探究,获取新知探究1.在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明.【归纳结论】等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.如对于“等腰三角形两底角的平分线相等”,的证明方法:证明:∵AB=AC,∴∠ABC=∠ACB.4 ∵BD、CE为∠ABC、∠ACB的平分线,∴∠3=∠4.在△ABD和△ACE中,∠3=∠4,AB=AC,∠A=∠A.∴△ABD≌△ACE(ASA).∴BD=CE(全等三角形的对应边相等).你能证明其它两个结论吗?探究2.求证:等边三角形三个内角都相等并且每个内角都等于60°.已知:在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.证明:在△ABC中,∵AB=AC,∴∠B=∠C(等边对等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).又∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°【归纳结论】等边三角形三个内角都相等并且每个内角都等于60°.【教学说明】通过自主探究和同伴的交流,学生一般都能在直观猜测、测量验证的基础上探究出结论.三.运用新知,深化理解1.如图,已知△ABC和△BDE都是等边三角形.求证:AE=CD.证明:∵△ABC和△BDE都是等边三角形.∴∠ABE=∠CBD=60°,AB=CB,BE=BD.在△ABE与△CBD中,AB=CB,∠ABE=∠CBD,BE=BD.∴△ABE≌△CBD(SAS).∴AE=CD.2.如图,△ABC中,AB=AC,E在CA的延长线上,且ED⊥BC于D,求证:AE=AF证明:∵AB=AC,4 ∴∠B=∠C,∵ED⊥BC,∴∠B+∠BFD=90°,∠C+∠E=90°,∵∠BFD=∠EFA,∴∠B+∠EFA=90°,∵∠C+∠E=90°,∠B=∠C,∴∠EFA=∠E,∴AE=AF.3.如图,在△ABC中,∠A=20°,D在AB上,AD=DC,∠ACD∶∠BCD=2∶3,求:∠ABC的度数.解:∵AD=DC,∴∠ACD=∠A=20°,∵∠ACD∶∠BCD=2∶3,∴∠BCD=30°,∴∠ACB=50°,∴∠ABC=110°.【教学说明】在巩固等边三角形的性质的同时,进一步对等腰三角形的性质进行综合应用,在书写过程中掌握综合证明法的基本要求和步骤,规范证明的书写格式四.师生互动,课堂小结掌握证明的基本步骤和书写格式,经历“探索-发现-猜想-证明”的过程,能够用综合法证明等腰三角形的两条腰上的中线(高),两底角的平分线相等,等边三角形三个内角都相等并且每个内角都等于60°.五.教学板书布置作业:教材“习题1.2”中第2、3题.4 在探究时,对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明.4

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-27 20:54:01 页数:4
价格:¥1 大小:251.50 KB
文章作者:随遇而安

推荐特供

MORE