首页

第一章整式的乘除末复习教案(北师大版七下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

章末复习【知识与技能】梳理本章内容,构建知识网络;重点加强对整式的概念,整式的乘除运算,幂的运算性质的复习,并能灵活运用知识解决问题.【过程与方法】通过梳理本章内容,发展学生的符号感以及合情说理的能力,渗透转化、类比的思想.【情感态度】让学生在数学活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.感受数学与现实生活的密切联系,增强学生的数学应用意识.【教学重点】整式的乘除、幂的运算.【教学难点】整式的乘除、幂的运算.一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.幂的运算性质:(1)同底数幂的乘法:am·an=am+n(m,n都是正整数)逆用:am+n=am·an6 (2)同底数幂的除法:am÷an=am-n(a≠0,m,n都是正整数)逆用:am-n=am÷an(a≠0)(3)幂的乘方:(am)n=amn(m,n都是正整数)逆用:amn=(am)n(4)积的乘方:(ab)n=anbn(m,n都是正整数)逆用,anbn=(ab)n(5)零指数幂:a0=1(注意底数范围a≠0).(6)负指数幂:(a≠0,p是正整数)2.整式的乘除法:(1)单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数.相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式.(2)单项式乘以多项式:m(a+b+c)=ma+mb+mc.法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.(3)多项式乘以多项式:(m+n)(a+b)=ma+mb+na+nb.多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(4)单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(5)多项式除以单项式:(a+b+c)÷m=a÷m+b÷m+c÷m.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.3.整式乘法公式:(1)平方差公式:(a+b)(a-b)=a2-b2(2)完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2逆用:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.【教学说明】可以采用提问的形式,让学生回答,达到巩固的作用.三、典例精析,复习新知6 例1下列运算正确的是()A.x3+x3=x6B.2x·3x2=6x3C.(2x)3=6x3D.(2x2+x)÷x=2x解析:A.应为x3+x3=2x3,故本选项错误;B.2x·3x2=6x3,正确;C.应为(2x)3=23x3=8x3,故本选项错误;D.应为(2x2+x)÷x=2x+1,故本选项错误.故选B.例2已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>cB.a>c>bC.a<b<cD.b>c>a解析:∵a=8131=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选A.例3一个长方体的长、宽、高分别3a-4,2a,a,它的体积等于()A.3a3-4a2B.a2C.6a3-8a2D.6a3-8a解析:由题意知,V长方体=(3a-4)·2a·a=6a3-8a2.故选C.例4已知:2x=4y+1,27y=3x-1,则x-y=3.解析:∵2x=4y+1∴2x=2(2y+2)∴x=2y+2①又∵27y=3x-1∴33y=3x-1∴3y=x-1②解①②组成的方程组得例5计算:(1)82×42011×(-0.25)2015;解:82×42011×(-0.25)2015=43×42011×(-0.25)2015=42014×(-0.25)2014×(-0.25)=-0.25×(-4×0.25)2014=-1/4(2)20152-2014×2016.解:20152-2014×2016=20152-(2015-1)(2015+1)=20152-(20152-12)=20152-20152+1=1例6若(x+y)2=36,(x-y)2=16,求xy和x2+y2的值.解:∵(x+y)2=36,(x-y)2=16,∴x2+2xy+y2=36,①x2-2xy+y2=16,②①-②得4xy=20,∴xy=5,6 ①+②得2(x2+y2)=52,∴x2+y2=26.【教学说明】对幂的运算,乘法公式的应用.四、复习训练,巩固提高1.已知:a+b=m,ab=-4,化简:(a-2)(b-2)的结果是()A.6B.2m-8C.2mD.-2m解析:∵a+b=m,ab=-4,∴(a-2)(b-2)=ab+4-2(a+b)=-4+4-2m=-2m故选D.2.某商场四月份售出某品牌衬衣b件,每件c元,营业额a元.五月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则五月份该品牌衬衣的营业额比四月份增加()A.1.4a元B.2.4a元C.3.4a元D.4.4a元解析:5月份营业额为3b×=bc=,4月份营业额为bc=a,∴125a-a=1.4a.故选A.3.已知(x+a)(x+b)=x2-13x+36,则a+b的值是()A.13B.-13C.36D.-36解析:(x+a)(x+b)=x2+(a+b)x+ab,又∵(x+a)(x+b)=x2-13x+36,所以a+b=-13.故选B.4.若(a+2)2+|b+1|=0,则5ab2-{2a2b-[3ab2-(4ab2-2a2b)]}=______.解析:由(a+2)2+|b+1|=0得a=-2,b=-1,当a=-2,b=-1时,5ab2-{2a2b-[3ab2-(4ab2-2a2b)]}=4ab2=-8.5.计算:.解:根据幂的乘方与积的乘方法则可知,6 8.先化简:(2x-1)2-(3x+1)(3x-1)+5x(x-1),再选取一个你喜欢的数代替x求值.解:(2x-1)2-(3x+1)(3x-1)+5x(x-1)=4x2-4x+1-(9x2-1)+5x2-5x=4x2-4x+1-9x2+1+5x2-5x=-9x+29.已知a-b=4,ab+m2-6m+13=0,求证(a+m)b的值为.证明:ab+m2-6m+13=0可化为ab+m2-6m+9+4=0,即ab+(m-3)2+4=0①;将a-b=4转化为b=a-4②;②代入①得:a(a-4)+(m-3)2+4=0,即(a-2)2+(m-3)2=0;解得a=2;m=3.∴b=a-4=2-4=-2;因此(a+m)b=(2+3)-2=.【教学说明】因为内容特点,运算规律与方法是学生应掌握的重点,所以本课复习以练习为主,通过大量题型训练,使学生理解掌握各类运算技巧,并力求熟练.五、师生互动,课堂小结通过本节课的学习,你在知识上有哪些收获?哪些能力得到了提高?6 1.布置作业:教材“复习题”中第2、3、5、8、9题.2.完成同步练习册中本课时的练习.复习课是对所学内容进行一个系统地复现,巩固与消化的教学活动,同时,它又是一个有针对性地诊断教学.通过一定的复习,老师应解决一些学生混淆不清的知识,弥补一定的知识漏洞,并帮助他们建构起自身的知识体系.所以,我觉得在复习课前对教学内容进行筛选和重组是必要的.我们需要总结出知识点之间的关联性,提炼出知识点的重中之重以及罗列出学生容易犯错的知识点,然后重组教学内容,经过这样的筛选之后,教学内容更有针对性,课堂教学也更为有效.6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-26 22:33:01 页数:6
价格:¥1 大小:251.00 KB
文章作者:随遇而安

推荐特供

MORE