首页

12.3 第2课时 角平分线的判定2教案(人教版八上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

第2课时角平分线的判定一、教学目标(一)知识与技能1.了解角的平分线的判定定理;2.会利用角的平分线的判定进行证明与计算.(二)过程与方法在探究角的平分线的判定定理的过程中,进一步发展学生的推理证明意识和能力.(三)情感、态度与价值观在探究作角的平分线的判定定理的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、教学重点、难点重点:角的平分线的判定定理的证明及应用;难点:角的平分线的判定. 三、教法学法自主探索,合作交流的学习方式.四、教学过程(一)复习、回顾1.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.2.角平分线的性质:角的平分线上的点到角的两边的距离相等.①推导已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,垂足分别为点A、点B.求证:PA=PB. 证明:∵PA⊥OM,PB⊥ON∴∠PAO=∠PBO=90°∵OC平分∠MON∴∠1=∠2在△PAO和△PBO中,∴△PAO≌△PBO∴PA=PB②几何表达:(角的平分线上的点到角的两边的距离相等)如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB.(二)合作探究角平分线的判定:到角的两边的距离相等的点在角的平分线上.①推导已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.求证:点P在∠MON的平分线上.证明:连结OP在Rt△PAO和Rt△PBO中, ∴Rt△PAO≌Rt△PBO(HL)∴∠1=∠2∴OP平分∠MON即点P在∠MON的平分线上.②几何表达:(到角的两边的距离相等的点在角的平分线上.)如图所示,∵PA⊥OM,PB⊥ON,PA=PB∴∠1=∠2(OP平分∠MON)【典型例题】例1.已知:如图所示,∠C=∠C′=90°,AC=AC′.求证:(1)∠ABC=∠ABC′;(2)BC=BC′(要求:不用三角形全等判定). 分析:由条件∠C=∠C′=90°,AC=AC′,可以把点A看作是∠CBC′平分线上的点,由此可打开思路. 证明:(1)∵∠C=∠C′=90°(已知),∴AC⊥BC,AC′⊥BC′(垂直的定义).又∵AC=AC′(已知),∴点A在∠CBC′的角平分线上(到角的两边距离相等的点在这个角的平分线上).∴∠ABC=∠ABC′.(2)∵∠C=∠C′,∠ABC=∠ABC′,∴180°-(∠C+∠ABC)=180°-(∠C′+∠ABC′)即∠BAC=∠BAC′,∵AC⊥BC,AC′⊥BC′,∴BC=BC′(角平分线上的点到这个角两边的距离相等).例2. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论? 分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P到三边的垂线段.解:AP平分∠BAC.结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.理由:过点P分别作BC,AC,AB的垂线,垂足分别是E、F、D.∵BM是∠ABC的角平分线且点P在BM上,∴PD=PE(角平分线上的点到角的两边的距离相等).同理PF=PE,∴PD=PF.∴AP平分∠BAC(到角的两边的距离相等的点在这个角的平分线上). (三)巩固训练(四)小结请你说说本课的收获与困惑.(五)作业

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-25 01:15:01 页数:4
价格:¥1 大小:567.18 KB
文章作者:随遇而安

推荐特供

MORE