首页

第2章四边形2.3中心对称和中心对称图形第1课时中心对称概念及性质教案(湘教版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

2.3中心对称和中心对称图形第1课时中心对称概念及性质【知识与技能】1.了解中心对称、对称中心和对称点的概念.2.理解中心对称的性质.3.掌握运用中心对称的性质作图的方法.【过程与方法】通过对中心对称的性质的探究及运用,初步学会从正反两方面去思考问题的数学思考方法,以及类比思想的应用.【情感态度】通过一系列探索活动,培养学生严谨的科学态度和探索的精神;经历数学知识融于生活实际的实习过程,体验数学学习的快乐.【教学重点】中心对称的概念;中心对称的性质;利用中心对称的性质进行作图.【教学难点】中心对称与轴对称的区别与联系,利用中心对称的性质准确作图.一、创设情境,导入新课提问(1)把图(1)中的一个图案绕点O旋转180°,你有什么发现?(2)如图(2),线段AC、BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180°,你有什么发现?【教学说明】通过显示图形变化,导入课题可以吸引学生的注意力.同时让学生通过有声有色的图形变换,引出概念,学生接收快.教师讲课前,先让学生完成预习.二、思考探究,获取新知3 问题1中心对称、对称中心和对称点的概念做一做教材第51页图2-31【教学说明】通过实际操作,感受图形变化,直观的得出有关概念,易于学生理解.问题2中心对称的性质阅读教材第51页第四段及方框内容并作图【教学说明】让学生自己动手画图,进一步加深对中心对称的理解,通过观察得出中心对称的性质,为下一步的学习打好基础.例:教材第51页“例题”【教学说明】运用性质,寻找对应点,让学生学会作一个关于某点成中心对称的图形,并得以运用.三、运用新知,深化理解1.如图所示的4组图形中,右边的图形与左边的图形成中心对称的是()2.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.已知A、B、O三点不在同一条直线上,A、A′关于点O对称,B、B′关于点O对称,那么线段AB与A′B′的关系是,若连接AB′、BA′,则四边形ABA′B′是形.4.已知∠ABC内有一点P,作出∠ABC关于点P的对称图形.【教学说明】由学生自主完成,加深了对所学知识的理解与运用,便于教师掌握情况,做到及时辅导,并有针对性地加强训练.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.3 答案:1.A2.D3.ABA′B′,平行四边4.(1)如图所示,连接BP并延长到B′,使BP=B′P,则B′为B的对称点;(2)在AB、BC上取M、N点,同理画出M、N的对称点M′、N′;(3)连结B′M′、B′N′,得到∠M′B′N′,即为∠ABC关于点P的对称图形.四、师生互动,课堂小结经过这节课的学习,你能作出一个关于某点的中心对称图形吗?有哪些收获?还存在哪些困难?请与同学们探讨.【教学说明】回顾所学知识,做到整体认识,突出方法总结,让学生掌握规律,同学之间相互学习,共同进步.1.布置作业:习题2.3中的第1、4题.2.完成练习册中本课时练习的作业部分.通过练习的情况来看,学生对于中心对称的作图掌握较好,解题也相当熟练,而对于中心对称、对称中心等概念的理解上还不透彻,有些模棱两可,在以后的教学中要通过实例或图形不断加以强化.3

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-12 06:03:01 页数:3
价格:¥1 大小:222.00 KB
文章作者:随遇而安

推荐特供

MORE