首页

第四章图形的相似4.4探索三角形相似的条件第3课时利用三边判定三角形相似教案(北师大版九上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

4.4探索三角形相似的条件第3课时利用三边判定三角形相似教学目标1.掌握相似三角形的判定定理3;2.能熟练运用相似三角形的判定定理3.教学重难点【教学重点】判定定理3【教学难点】判定定理3的应用课前准备课件.教学过程一、情景导入如图,如果要判定△ABC与△A′B′C′相似,是不是一定需要一一验证所有的对应角和对应边的关系?可否用类似于判定三角形全等的SSS方法,通过一个三角形的三条边与另一个三角形的三条边对应的比相等,来判定两个三角形相似呢?任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?二、合作探究探究点一:三边成比例的两个三角形相似已知△ABC的三边长分别为1,,,△DEF的三边长分别为,,2,试判断△ABC与△DEF是否相似.解析:因为已知两个三角形的三边长,所以可以考虑根据三边之间的比例关系来判定两个三角形是否相似.解:因为==,所以△ABC与△DEF相似.方法总结:已知两个三角形三边的大小,要判断它们是否相似,关键是通过计算来说明三边是否对应成比例.在相似三角形中,最短(长)边与最短(长)边是对应边,所以在判定两个三角形的三边是否成比例时,应先确定边的大小,以便找准对应关系.探究点二:相似三角形的判定定理3的应用如图所示,在△ABC中,点D、E分别是△ABC的边AB,AC上的点,AD=3,AE=6,DE=5,BD=15,CE=3,BC=15.根据以上条件,你认为∠B=∠AED吗?并说明理由.解析:要说明∠B=∠AED,只需要得到△ABC∽△AED-2- ,根据三边成比例的两个三角形相似可证得△ABC∽△AED.解:∠B=∠AED.理由如下:由题意,得AB=AD+BD=3+15=18,AC=AE+CE=6+3=9,==3,==3,==3,所以==,故△ABC∽△AED,所以∠B=∠AED.方法总结:证明两角相等,可通过证明对应的两个三角形相似而得到,给出的已知条件以边为主时,首先考虑使用“三边成比例”的判定条件.如图甲,小正方形的边长均为1,则乙图中的三角形(阴影部分)与△ABC相似的是哪一个图形?解析:图中的三角形均为格点三角形,可根据勾股定理求出各边的长,然后根据三角形三边是否对应成比例来判断乙图中的三角形与△ABC是否相似.解:由甲图可知AC==,BC=2,AB==.同理,图①中,三角形的三边长分别为1,,2;同理,图②中,三角形的三边长分别为1,,;同理,图③中,三角形的三边长分别为,,3;同理,图④中,三角形的三边长分别为2,,.∵===,∴图②中的三角形与△ABC相似.方法总结:(1)各个图形中的三角形均为格点三角形,可以根据勾股定理求出各边的长,然后根据三角形三边的长度是否成比例来判断两个三角形是否相似;(2)判断三边是否成比例,可以将三角形的三边长按大小顺序排列,然后分别计算他们对应边的比,最后由比值是否相等来确定两个三角形是否相似.三、板书设计相似三角形的判定定理3:三边成比例的两个三角形相似.四、教学反思从学生已学的知识入手,通过设置问题,引导学生进行计算、推理和归纳,提高分析问题和解决问题的能力.感受两个三角形相似的判定定理3与全等三角形判定定理(SSS)的区别与联系,体会事物间一般到特殊、特殊到一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生与他人交流、合作的意识和品质.-2-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-11 08:33:01 页数:2
价格:¥1 大小:50.17 KB
文章作者:随遇而安

推荐特供

MORE