首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
福建省福州市八县(市)一中2022-2023学年高一数学下学期期末联考试题(Word版附解析)
福建省福州市八县(市)一中2022-2023学年高一数学下学期期末联考试题(Word版附解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/19
2
/19
剩余17页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022-2023学年度第二学期福州八县(市)一中期末联考高一年级数学科试卷完卷时间:120分钟满分:150分一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数满足,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】先求出复数,化成标准形式,再根据复数的几何意义来判断.【详解】依题意得,,对应复平面的点是,在第四象限.故选:D.2.已知,,且与平行,则等于()A.B.C.D.【答案】C【解析】【分析】先求出向量与的坐标,然后利用向量共线坐标公式计算即可.【详解】因为,,所以,,若与平行,则,得x=2.故选:C.3.在平行四边形ABCD中,E是BC的中点,DE交AC于F,则()A.B.C.D. 【答案】D【解析】【分析】由题可得,再根据向量运算法则即可表示.【详解】因为是BC的中点,,所以,所以.故选:D.4.某种心脏手术,成功率为0.6,现采用随机模拟方法估计“3例心脏手术全部成功”的概率:先利用计算器或计算机产生0~9之间取整数值的随机数,由于成功率是0.6,故我们用0,1,2,3表示手术不成功,4,5,6,7,8,9表示手术成功;再以每3个随机数为一组,作为3例手术的结果.经随机模拟产生10组随机数:812,832,569,684,271,989,730,537,925,907.由此估计3例心脏手术全部成功的概率为()A.0.2B.0.3C.0.4D.0.5【答案】B【解析】【分析】利用古典概率的概率公式进行计算即可.【详解】随机模拟产生10组随机数中,有3组随机数表示手术成功,故3例心脏手术全部成功的概率为:.故选:B5.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】【分析】分别解不等式和,根据小范围推大范围,分析判断即可.【详解】若,解得,即解集;若,注意到在定义域内单调递增,解得;故“”是“”的既不充分也不必要条件. 故选:D.6.从含有三件正品和一件次品的产品中任取两件,则取出的两件中恰有一件次品的概率是()A.B.C.D.【答案】D【解析】【分析】根据古典概型概率计算公式直接计算.【详解】有三件正品(用,,表示)和一件次品(用表示)的产品中任取两件的样本空间,恰有一件次品,由古典概型得,故选:D.7.如图,某景区欲在两山顶A,C之间建缆车,需要测量两山顶间的距离.已知山高,,在水平面上E处测得山顶A的仰角为30°(B、D、E在同一水平面上),山顶C的仰角为60°,,则两山顶A,C之间的距离为()A.B.C.D.【答案】B【解析】【分析】根据给定条件,在和中分别求出AE,CE,再利用余弦定理计算作答.【详解】在中,,,则,在中,,,则,在,由余弦定理得:,即,解得, 所以两山顶A,C之间的距离为.故选:B8.已知直四棱柱的棱长均为2,.以D1为球心,为半径的球面与侧面BCC1B1的交线长为()A.B.C.D.2【答案】B【解析】【分析】先找出平面截球面截面圆的圆心是的中点,再找到截面圆的半径和交线.【详解】如图所示:由已知,连接,则因为直四棱柱ABCD-A1B1C1D1的棱长均为2,,所以为等边三角形.且平面,取的中点,连接,则,又平面,所以,又,所以平面,故平面截球面的截面圆的圆心是点,取和的中点,连接,则,故在球面上,,,所以为直角三角形,,球面与侧面的交线是侧面上以为圆心, 为半径的圆弧.故选:B.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.分别抛掷两枚质地均匀的硬币,设事件A=“第一枚正面朝上”,事件B=“第二枚正面朝上”,下列结论中正确的是()A.A与B为互斥事件B.A与B为相互独立事件CD.【答案】BD【解析】【分析】根据互斥事件、独立事件、和事件、积事件的知识对选项进行分析,由此确定正确答案.【详解】抛掷两枚质地均匀的硬币,基本事件有:(正,正),(正,反),(反,正),(反,反),事件包含的基本事件是:(正,正),(正,反).事件包含的基本事件是:(正,正),(反,正).所以不是互斥事件,A选项错误.,所以BD选项正确.,C选项错误.故选:BD10.已知两个不同的平面、和两条不重合的直线m、n,有下列命题中正确的是()A.若,,则B.若,则C.若,,则D.若,,,则【答案】AD【解析】【分析】根据空间中线面、面面的位置关系一一判断即可【详解】对于A:若,,则,故A正确;对于B:若,则或,故B错误; 对于C:若,,则或与异面,故C错误;对于D:若,,则,又,所以,故D正确;故选:AD11.已知,则正确的有()A.B.C.D.【答案】ABC【解析】【分析】先把指数式化为对数式可得,,可判断A,由对数的运算性质可判断D,由基本不等式可判断BC.【详解】,,,,,故正确,,故D不正确,,当且仅当时取等号,,,故B正确,(因为,故等号不成立),,故C正确.故选:12.如图,边长为1的正方形ABCD的顶点A,D分别在轴、轴正半轴上移动,则的可能值为()A.B.C.D.2【答案】CD【解析】【分析】令,由边长为1的正方形的顶点、分别在轴、轴正半轴上,可得出,的坐标,由此可以表示出两个向量,由数量积公式结合三角函数知识求解. 【详解】解:如图令,由于,故,,如图,,故,,故同理可求得,即,所以因为,所以,即.故选:CD三、填空题:本题共4小题,每小题5分,共20分.13.若样本数据的方差为3,则数据的方差为________.【答案】12【解析】【分析】利用方差的性质直接求解.【详解】样本数据的方差为3,数据的方差为.故答案为:12.14.已知函数,则__________.【答案】4【解析】【分析】根据分段函数的定义求解即可.【详解】由,所以,所以.故答案为:4. 15.在四面体中,E、F分别是的中点.若所成的角为45°,且,则的长为_________.【答案】【解析】【分析】作出辅助线,找到或,分两种情况,结合余弦定理求出答案.【详解】取的中点,连接,因为E、F分别是的中点,所以,因为所成的角为,所以或,如图1,,则,如图,,则故答案为:16.已知ABCD—A1B1C1D1是棱长为2的正方体,E为AA1的中点,点F在CC1上(不与C、C1重合),三棱锥A-D1EF的体积为__________,当F为CC1的中点,几何体AED1FCD的体积为__________.【答案】①.②.【解析】【分析】根据给定条件,利用等体积法求解三棱锥的体积.根据割补法,将几何体分解为三棱柱和三棱锥,即可由体积公式求解.【详解】在正方体中,棱长为2,为的中点, 则,为上一点,而平面,平面,则点到平面的距离为长,所以三棱锥的体积.取的中点为,连接,由于均为棱的中点,由正方体的结构特征可知为直三棱柱,故几何体可以分割为三棱柱和三棱锥,故几何体体积为,故答案为:,四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知非零向量,夹角为,且.(1)当时,求;(2)若,且,求.【答案】(1)(2)【解析】【分析】(1)利用向量数量积运算公式和夹角余弦公式进行求解;(2)根据向量垂直得到,再 求出,进而求出【小问1详解】当时,,所以,∵,∴;【小问2详解】∵,∴,即∴,∵,∴∴18.如图,是正方形所在平面外一点,且平面平面,、分别是线段、的中点.(1)求证:平面;(2)求证:.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据平行四边形或者三角形的中位线可得线线平行,进而可证,或者证明面面平行也可, (2)根据面面垂直可得线面垂直,进而得到线线垂直.【小问1详解】法一:取PD中点G,连接FG,AG,在PDC中,因为F、G分别是PC,PD的中点,所以FGCD,FG=CD;因为E是正方形ABCD边AB的中点,所以AE//CD,AE=CD;所以AEGF,AE=GF;即四边形AEFG是平行四边形,所以EF//AG,又因为AG平面PAD,EF平面PAD,所以EF平面PAD法二:延长DA交CE延长线于H,连接PH,由于AE//CD,AE=CD,所以是的中点,是的中点,所以EFPH,又因为PH平面PAD,EF平面PAD,所以EF平面PAD法三:取CD中点I,连接EI,FI, 由于均为中点,所以,平面,平面,平面EFI平面PAD,EF平面,所以EF平面PAD【小问2详解】因为正方形ABCD中,BDAC,又平面ABCD平面PAC;平面PAC平面ABCD=AC,BD平面ABCD,所以BD平面PAC,因为PC平面PAC,所以BDPC.19.已知在中,角,,所对的边分别是,,,满足条件:______.在①;②;③.这三个条件中任选个,补充在上面的问题中,并解答.注:如果选择多个条件分别作答,按第一个解答计分.问题:(1)求角A的大小;(2)求的取值范围.【答案】(1)选①②③,答案均为(2)【解析】【分析】(1)选①,由正弦定理及得到,结合 ,求出答案;选②,由正弦定理及得到,结合,求出答案;选③,由正弦定理及得到,结合,求出答案;(2)利用三角恒等变换得到,由求出,从而得到答案.【小问1详解】选择①,由正弦定理可得,,即,所以,又,所以,故,又,因此.选择②,由正弦定理可得,,从而可得,,即,又,所以,于是,又,因此,.选择③,由正弦定理可得,,即, 得,即,又,所以,得,又,因此,.【小问2详解】∵,由可知,,所以,从而,因此,,故的取值范围为.20.如图,一块正方体形木料ABCD—A1B1C1D1的上底面有一点M,(1)问:经过点M上底面上能否画一条直线,使其与CM垂直,若可以,该怎么画,写出作图过程并加以证明,若不能,说明理由.(2)若正方体棱长为2,F为线段BC的中点,求AF与面A1BC所成角的正弦值. 【答案】(1)可以,作图过程见解析,证明见解析(2)【解析】【分析】(1)连接C1M,在平面A1B1C1D1上过M点作直线GHC1,则GHCM,再利用线面垂直证明线线垂直即可;(2)在平面ABB1A1上,过点A作AEA1B,则E是A1B的中点,先证明先AE平面A1BC.可得AFE为斜线AF与平面A1BC所成的角,进而可得答案.【小问1详解】经过点M在上底面上能画一条直线与CM垂直,如图所示,连接C1M,在面A1B1C1D1上过M点作直线GHC1M.则GHCM,证明:在正方体AC1中,CC1平面A1B1C1D1,GH平面A1B1C1D1,所以GHCC1,而GHC1M,且C1MCC1,平面MCC1,故GH平面MCC1,又CM平面MCC1,所以GHMC.【小问2详解】在平面ABB1A1上,过点A作AEA1B,则E是A1B的中点, 在正方体AC1中,BC平面ABB1A1,AE平面ABB1A1,所以BCAE,而A1BBC=B,平面A1BC.故AE平面A1BC.所以EF为斜线AF在平面A1BC上的射影,AFE为斜线AF与平面A1BC所成的角.∵AE平面A1BC,EF平面A1BC,AEEF在直角三角形AEF中,AF=,AE=,sinAFE=,所以AF与面A1BC所成角的正弦值为.21.近几年随着疫情的影响,经济发展速度放缓,投资渠道有限,越来越多人选择投资“黄金”作为理财的手段,下面将A市把黄金作为理财产品的投资人的年龄情况统计如图所示.(1)求a的取值,以及把黄金作为理财产品的投资者年龄的上四分位数(第75百分位数);(2)现按照分层抽样的方法从年龄在和的投资者中随机抽取5人,再从这5 人中随机抽取2人进行投资调查,求至少有1人年龄在的概率.【答案】(1),58(2)【解析】【分析】(1)根据频率之和为1可得,进而由百分位数的计算即可求解,(2)根据列举法,结合古典概型的计算公式即可求解.【小问1详解】依题意,,解得,因为前3组的频率和为<0.75,前4组的频率和为,所以所求上四分位数(第75百分位数)为【小问2详解】由频率分布直方图可知年龄在和的频率分别为,所以年龄在的投资者应抽取3人,记为A,B,C年龄在的投资者应抽取2人,记为a,b,则任取2人,所有的情况为:,共10种,满足条件为共7种.故至少有1人年龄在的概率为.22.已知函数,;(1)判断并证明函数的奇偶性;(2)指出函数的单调性(只需用复合函数理由说明,不要求定义证明);(3)设对任意,都有成立;请问是否存在的值,使最小值为,若存在求出的值.【答案】(1)在R上为奇函数,证明见解析(2)在上为减函数 (3)存在,【解析】【分析】(1)利用函数的奇偶性定义证明即可;(2)根据复合函数的单调性法则,结合函数的奇偶性即可说明;(3)由函数单调性可得,从而转化为求的最小值,再解关于的不等式,对函数换元讨论求最小值,得到关于的方程解之即可得到答案.【小问1详解】函数在R上为奇函数.证明:因为,所以恒成立.所以函数的定义域为R,关于原点中心对称.因为,所以函数在R上奇函数.【小问2详解】由(1)知=因为在是增函数,又,()为减函数,所以在上为减函数,又为奇函数,所以在上为减函数,故在上单调递减;【小问3详解】因为对任意都有,所以对任意都有, 由在上为减函数;所以对任意都有,所以对任意都有,因为,所以即,解得因为,令,则,令,它的对称轴为,当,即时,在上是增函数,,解得舍去,当即时,此时,解得,所以.【点睛】方法点睛:小问(3)属于单调性和奇偶性综合应用问题,以及函数不等式恒成立问题,解决问题的关键是利用函数性质进行恒等变形,转化为不等式恒成立问题,求最值解不等式得到的范围,再通过换元把转化为二次函数闭区间上最值问题.本小题难度较大,对数学能力要求较高.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
福建省福州市八县(市、区)一中2022-2023学年高二语文上学期期末联考试题(Word版附解析)
福建省福州市八县(市、区)一中2022-2023学年高二生物上学期期末联考试题(Word版附答案)
福建省福州市八县(市)协作校2022-2023学年高二数学上学期期末联考试题(Word版附解析)
福建省福州市八县(市、区)一中2022-2023学年高二数学上学期期末联考试题(Word版附解析)
福建省福州市八县(市、区)一中2022-2023学年高二历史上学期期末联考试题(Word版附答案)
福建省福州市八县(市、区)一中2022-2023学年高二英语上学期期末联考试题(Word版附答案)
福建省福州市八县(市、区)一中2022-2023学年高二政治上学期期末联考试题(Word版附答案)
福建省福州市八县(市、区)一中2022-2023学年高二化学上学期期末联考试题(Word版附答案)
福建省福州市八县(市、区)一中2022-2023学年高二物理上学期期末联考试题(Word版附答案)
福建省福州市八县(市)一中2022-2023学年高一数学下学期期中联考试题(Word版附解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-08-10 02:36:02
页数:19
价格:¥2
大小:1.56 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划