首页

第23章图形的相似23.3相似三角形第2课时教案(华东师大版九上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

23.3相似三角形第2课时教学目标1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.教学重难点【教学重点】“两角分别相等的两个三角形相似”,分清条件和结论.【教学难点】用“两角分别相等的两个三角形相似”判定两个三角形相似.课前准备无教学过程一、情景导入如图,从放大镜里看到的三角尺和原来的三角尺相似吗?二、合作探究探究点一:两角分别相等的两个三角形相似在△ABC和△A′B′C′中,∠A=∠A′=80°,∠B=70°,∠C′=30°,这两个三角形相似吗?请说明理由.解:△ABC∽△A′B′C′.理由:由三角形的内角和是180°,得∠C=180°-∠A-∠B=180°-80°-70°=30°,所以∠A=∠A′,∠C=∠C′.故△ABC∽△A′B′C′(两角分别相等的两个三角形相似).  方法总结:两个三角形已有一对角相等,故只要看是否还有一对角相等即可.一般地,在解题过程中要特别注意“公共角”“对顶角”“同角(或等角)的余角”等隐含条件.探究点二:两角分别相等的两个三角形相似的应用已知:如图,△ABC的高AD、BE相交于点F,求证:=.解析:要证明=,可以考虑比例式中四条线段所在的三角形是否相似,即考虑△AFE与△BFD是否相似,利用两个角对应相等的三角形相似可以证明这个结论.  证明:∵BE⊥AC,AD⊥BC,2 ∴∠AEF=∠BDF=90°.又∵∠AFE=∠BFD,∴△AFE∽△BFD,∴=.  方法总结:证明比例式,可构造相似三角形,只要证明这两个三角形相似,就可根据相似三角形的对应边成比例得到相关比例式.如图所示,已知DE∥BC,DF∥AC,AD=4cm,BD=8cm,DE=5cm,求线段BF的长.  解:方法一:因为DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以=,即=,所以BC=15cm.又因为DF∥AC,所以四边形DFCE是平行四边形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因为DE∥BC,所以∠ADE=∠B.又因为DF∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以=,即=,所以BF=10cm.  方法总结:求线段的长,常通过找三角形相似得到成比例线段而求得,因此选择哪两个三角形就成了解题的关键,这就需要通过已知的线段和所求的线段分析得到.三、板书设计相似三角形的判定定理1:两角分别相等的两个三角形相似.四、教学反思感受相似三角形与相似多边形、相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生的观察、动手探究、归纳总结的能力.2

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-10 01:27:01 页数:2
价格:¥1 大小:133.00 KB
文章作者:随遇而安

推荐特供

MORE