首页

第2章三角形2.5全等三角形第6课时教案(湘教版八上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

2.5全等三角形第6课时教学目标1.掌握全等三角形的性质与判定定理;2.熟练应用全等三角形的判定定理解决问题.教学重难点【教学重点】掌握全等三角形的性质与判定定理。【教学难点】应用全等三角形的判定定理解决问题。课前准备无教学过程一、情境导入1.判定三角形全等的四种方法:SAS,ASA,AAS,SSS.2.怎样选择合适的方法解题呢?二、合作探究探究点一:对两个三角形全等条件的再认识【类型一】条件开放例1如图,∠ABC=∠EBD,AB=BE,要使△ABC≌△EBD,则需要补充的条件为____________(填一个即可).解析:需要补充的条件为BC=BD或∠A=∠E或∠C=∠D.(1)补充的条件为BC=BD,∵∠ABC=∠EBD,AB=BE,又有BC=BD,∴△ABC≌△EBD(SAS).(2)补充的条件为∠A=∠E,∵∠ABC=∠EBD,AB=BE,又有∠A=∠E,∴△ABC≌△EBD(ASA).(3)补充的条件为∠C=∠D,∵∠ABC=∠EBD,AB=BE,又有∠C=∠D,∴△ABC≌△EBD(AAS).故填BC=BD或∠A=∠E或∠C=∠D.方法总结:①已知一边一角,可任意添加一个角的条件,用AAS或ASA判定全等;添加边的条件时只能添加夹这个角的边,用SAS判定全等.若添加另一边即这个角的对边,符合SSA的情形,不能判定三角形全等.②添加条件时,应结合判定全等的四种方法:SSS、SAS、ASA、AAS,注意不能是SSA的情形.5 【类型二】结论开放例2如图,点F在BC上,AB=AE,AC=AF,∠EAB=∠CAF,请你任意写出一个正确结论:______________.解析:由∠EAB=∠CAF可得∠EAF=∠CAB,又AB=AE,AC=AF,所以△ABC≌△AEF(SAS),所以CB=FE,∠E=∠B,∠AFE=∠C.故可以填:△ABC≌△AEF或CB=FE或∠E=∠B或∠AFE=∠C.方法总结:对于结论开放题,应先结合已知条件和图形进行推理,得出各种结论,任选其中之一即可.【类型三】条件结论都开放例3如图,△ADF和△BCE中,∠A=∠B,点D、E、F、C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题(用序号写出命题书写形式,如:如果①、②,那么③);(2)选择(1)中你写出的一个命题,说明它正确的理由.解析:(1)本题主要考查全等三角形的判定,能不能成立,就看作为条件的关系式能不能证明△ADF≌△BCE,从而得到结论;(2)对于“如果①,③,那么②”进行证明,根据平行线的性质得到∠AFD=∠BEC,因为AD=BC,∠A=∠B,利用AAS判定△ADF≌△BCE,得到DF=CE,即得到DE=CF.解:(1)如果①、③,那么②;如果②、③,那么①.(2)对于“如果①、③,那么②”证明如下:∵BE∥AF,∴∠AFD=∠BEC.又∵AD=BC,∠A=∠B,∴△ADF≌△BCE.∴DF=CE.∴DF-EF=CE-EF即DE=CF.对于“如果②、③,那么①”证明如下:∵BE∥AF,∴∠AFD=∠BEC.∵DE=CF,∴DE+EF=CF+EF即DF=CE.∵∠A=∠B,∴△ADF≌△BCE.∴AD=BC.方法总结:对于条件结论都开放的题目,结合图形,从中选取的条件要能使结论成立.探究点二:灵活选用合适方法证明三角形全等例4如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.5 求证:(1)△ABC≌△AED;(2)OB=OE.解析:(1)由∠BAD=∠EAC可知∠BAC=∠EAD,所以由,可证△ABC≌△AED(SAS);(2)由(1)知∠ABC=∠AED,AB=AE可知∠ABE=∠AEB,所以∠OBE=∠OEB,则OB=OE.证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD.在△ABC和△AED中,,∴△ABC≌△AED(SAS).(2)由(1)知∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB.∴∠ABE-∠ABC=∠AEB-∠AED,即∠OBE=∠OEB.∴OB=OE.探究点三:添加辅助线证明三角形全等例5如图,在四边形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.解析:(1)由CF平分∠BCD可知∠BCF=∠DCF,然后通过SAS就能证出△BFC≌△DFC.(2)连接BD,要证明AD=DE,证明△BAD≌△BED则可.由于BD=BD,所以只需另外证明两组角对应相等即可.证明:(1)∵CF平分∠BCD,∴∠BCF=∠DCF.在△BFC和△DFC中,,∴△BFC≌△DFC.(2)连接BD.∵△BFC≌△DFC,5 ∴BF=DF,∴∠FBD=∠FDB.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又∵BD=BD,∴△BAD≌△BED.∴AD=DE.方法总结:证明全等三角形中常见辅助线的作法:①连接两点;②倍长中线;③过一点作已知直线的平行线;④过一点作已知直线的垂线.探究点四:多次运用三角形全等的判定例6如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.解析:要证BE=DE,先证△ADC≌△ABC(SSS),得到∠DAE=∠BAE,再证△ADE≌△ABE(SAS)即可.解:相等.理由如下:在△ABC和△ADC中,AB=AD,AC=AC,BC=DC,∴△ABC≌△ADC(SSS),∴∠DAE=∠BAE,在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE(SAS),∴BE=DE.方法总结:把要证明的边相等或角相等,转化为证明它们所在的三角形全等.如果两个三角形全等的条件不具备,可通过两次或多次三角形全等得出.探究点五:全等三角形判定的实际应用例7如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由.解:∵∠ACB=∠DCE,BC=CD,∠B=∠EDC=90°,∴△ACB≌△ECD,∴AB=DE.∴DE的长就是A、B之间的距离.方法总结:本题考查全等三角形的应用,关键是通过证明三角形全等,得到线段相等,从而得出结论成立.三、板书设计判定三角形全等的思路:5 四、教学反思本节课学习了全等三角形四种判定方法的灵活运用,让学生积极主动地去练习,学会分析已知什么,要证明什么,还需要什么条件,同时还要善于从图形中发现隐含的条件:公共边、公共角、对顶角、邻补角等.5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-08-08 11:30:01 页数:5
价格:¥1 大小:190.00 KB
文章作者:随遇而安

推荐特供

MORE