首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
初中
>
数学
>
2023中考数学真题分项汇报30新定义与阅读理解创新型问题(共31题)(原卷版)
2023中考数学真题分项汇报30新定义与阅读理解创新型问题(共31题)(原卷版)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/19
2
/19
剩余17页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题30新定义与阅读理解创新型问题(31题)一、单选题1.(2023·湖北武汉·统考中考真题)皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积,其中分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知,,则内部的格点个数是( )A.266B.270C.271D.2852.(2023·湖南张家界·统考中考真题)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边的边长为3,则该“莱洛三角形”的周长等于( ) A.B.C.D.3.(2023·重庆·统考中考真题)在多项式(其中中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:,,.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是 A.0B.1C.2D.34.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足,我们将这样的点定义为“倍值点”.若关于的二次函数(为常数,)总有两个不同的倍值点,则的取值范围是( )学科网(北京)股份有限公司 A.B.C.D.5.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:等都是三倍点”,在的范围内,若二次函数的图象上至少存在一个“三倍点”,则c的取值范围是( )A.B.C.D.6.(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率的近似值为3.1416.如图,的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计的面积,可得的估计值为,若用圆内接正十二边形作近似估计,可得的估计值为( )A.B.C.3D.二、填空题7.(2023·甘肃武威·统考中考真题)如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点处离开水面,逆时针旋转上升至轮子上方处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从处(舀水)转动到处(倒水)所经过的路程是________米.(结果保留)学科网(北京)股份有限公司 8.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有___________盏.9.(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图.是以O为圆心,为半径的圆弧,C是弦的中点,D在上,.“会圆术”给出长l的近似值s计算公式:,当,时,__________.(结果保留一位小数)10.(2023·北京·统考中考真题)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A,B,C,D,E,F,G七道工序,加工要求如下:学科网(北京)股份有限公司 ①工序C,D须在工序A完成后进行,工序E须在工序B,D都完成后进行,工序F须在工序C,D都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序ABCDEFG所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要______分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要______分钟.11.(2023·重庆·统考中考真题)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵,,∴7311是“天真数”;四位数8421,∵,∴8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记,,若能被10整除,则满足条件的M的最大值为________.12.(2023·四川乐山·统考中考真题)定义:若x,y满足且(t为常数),则称点为“和谐点”.(1)若是“和谐点”,则__________.(2)若双曲线存在“和谐点”,则k的取值范围为__________.13.(2023·浙江绍兴·统考中考真题)在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形.若二次函数图象的关联矩形恰好也是矩形,则________. 14.(2023·重庆·统考中考真题)如果一个四位自然数的各数位上的数字互不相等且均不为0,满足学科网(北京)股份有限公司 ,那么称这个四位数为“递减数”.例如:四位数4129,∵,∴4129是“递减数”;又如:四位数5324,∵,∴5324不是“递减数”.若一个“递减数”为,则这个数为___________;若一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,则满足条件的数的最大值是___________.三、解答题15.(2023·内蒙古通辽·统考中考真题)阅读材料:材料1:关于x的一元二次方程的两个实数根和系数a,b,c有如下关系:,.材料2:已知一元二次方程的两个实数根分别为m,n,求的值.解:∵m,n是一元二次方程的两个实数根,∴.则.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程的两个实数根为,则___________,___________;(2)类比:已知一元二次方程的两个实数根为m,n,求的值;(3)提升:已知实数s,t满足且,求的值.16.(2023·江苏徐州·统考中考真题)两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.学科网(北京)股份有限公司 (1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.17.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角. (1)如图1,在四边形中,,对角线平分.求证:四边形为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形是邻等四边形,,为邻等角,连接,过B作交的延长线于点E.若,求四边形的周长.18.(2023·山西·统考中考真题)阅读与思考:下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.瓦里尼翁平行四边形我们知道,如图1,在四边形中,点分别是边,的中点,顺次连接,得到的四边形是平行四边形. 我查阅了许多资料,得知这个平行四边形被称为瓦里尼翁平行四边形.瓦里尼翁学科网(北京)股份有限公司 是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切. ①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系.③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:证明:如图2,连接,分别交于点,过点作于点,交于点.∵分别为的中点,∴.(依据1) ∴.∵,∴.∵四边形是瓦里尼翁平行四边形,∴,即.∵,即,∴四边形是平行四边形.(依据2)∴.∵,∴.同理,…任务:(1)填空:材料中的依据1是指:_____________.依据2是指:_____________.(2)请用刻度尺、三角板等工具,画一个四边形及它的瓦里尼翁平行四边形,使得四边形为矩形;(要求同时画出四边形的对角线)(3)在图1中,分别连接得到图3,请猜想瓦里尼翁平行四边形的周长与对角线长度的关系,并证明你的结论.学科网(北京)股份有限公司 19.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式.例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点. (1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点.其中,按甲方式移动了m次.①用含m的式子分别表示;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为,在图中直接画出的图象;(3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.学科网(北京)股份有限公司 20.(2023·湖南张家界·统考中考真题)阅读下面材料:将边长分别为a,,,的正方形面积分别记为,,,.则例如:当,时,根据以上材料解答下列问题:(1)当,时,______,______;(2)当,时,把边长为的正方形面积记作,其中n是正整数,从(1)中的计算结果,你能猜出等于多少吗?并证明你的猜想;(3)当,时,令,,,…,,且,求T的值.21.(2023·湖北荆州·统考中考真题)如图1,点是线段上与点,点不重合的任意一点,在的同侧分别以,,为顶点作,其中与的一边分别是射线和射线,的两边不在直线上,我们规定这三个角互为等联角,点为等联点,线段为等联线.学科网(北京)股份有限公司 (1)如图2,在个方格的纸上,小正方形的顶点为格点、边长均为1,为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段为等联线、某格点为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在中,,,延长至点,使,作的等联角和.将沿折叠,使点落在点处,得到,再延长交的延长线于,连接并延长交的延长线于,连接.①确定的形状,并说明理由;②若,,求等联线和线段的长(用含的式子表示).22.(2023·内蒙古赤峰·统考中考真题)定义:在平面直角坐标系中,当点N在图形M的内部,或在图形M上,且点N的横坐标和纵坐标相等时,则称点N为图形M的“梦之点”. (1)如图①,矩形的顶点坐标分别是,,,,在点,,中,是矩形“梦之点”的是___________;学科网(北京)股份有限公司 (2)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H的坐标是___________,直线的解析式是___________.当时,x的取值范围是___________.(3)如图②,已知点A,B是抛物线上的“梦之点”,点C是抛物线的顶点,连接,,,判断的形状,并说明理由.23.(2023·北京·统考中考真题)在平面直角坐标系中,的半径为1.对于的弦和外一点C给出如下定义:若直线,中一条经过点O,另一条是的切线,则称点C是弦的“关联点”.(1)如图,点,,①在点,,中,弦的“关联点”是______.②若点C是弦的“关联点”,直接写出的长;(2)已知点,.对于线段上一点S,存在的弦,使得点S是弦的“关联点”,记的长为t,当点S在线段上运动时,直接写出t的取值范围.24.(2023·四川凉山·统考中考真题)阅读理解题:阅读材料:如图1,四边形是矩形,是等腰直角三角形,记为、为,若,则.学科网(北京)股份有限公司 证明:设,∵,∴,易证∴,∴∴,若时,当,则.同理:若时,当,则.根据上述材料,完成下列问题:如图2,直线与反比例函数的图象交于点,与轴交于点.将直线绕点顺时针旋转后的直线与轴交于点,过点作轴于点,过点作轴于点,已知. (1)求反比例函数的解析式;(2)直接写出的值;学科网(北京)股份有限公司 (3)求直线的解析式.25.(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如下表:流水时间t/min010203040水面高度h/cm(观察值)302928.12725.8任务1 分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“,”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系. 任务2 利用时,;时,这两组数据求水面高度h与流水时间t的函数解析式.【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差.小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3 (1)计算任务2得到的函数解析式的w值.学科网(北京)股份有限公司 (2)请确定经过的一次函数解析式,使得w的值最小.【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4 请你简要写出时间刻度的设计方案.26.(2023·山西·统考中考真题)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为和,其中.将和按图2所示方式摆放,其中点与点重合(标记为点).当时,延长交于点.试判断四边形的形状,并说明理由. (1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的绕点逆时针方向旋转,使点落在内部,并让同学们提出新的问题. ①“善思小组”提出问题:如图3,当时,过点作交的延长线于点与交于点.试猜想线段和的数量关系,并加以证明.请你解答此问题;学科网(北京)股份有限公司 ②“智慧小组”提出问题:如图4,当时,过点作于点,若,求的长.请你思考此问题,直接写出结果. 27.(2023·吉林长春·统考中考真题)【感知】如图①,点A、B、P均在上,,则锐角的大小为__________度. 【探究】小明遇到这样一个问题:如图②,是等边三角形的外接圆,点P在上(点P不与点A、C重合),连结、、.求证:.小明发现,延长至点E,使,连结,通过证明,可推得是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长至点E,使,连结,四边形是的内接四边形,.,.学科网(北京)股份有限公司 是等边三角形.,请你补全余下的证明过程.【应用】如图③,是的外接圆,,点P在上,且点P与点B在的两侧,连结、、.若,则的值为__________.28.(2023·广西·统考中考真题)【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片对折,使与重合,展平纸片,得到折痕;折叠纸片,使点B落在上,并使折痕经过点A,得到折痕,点B,E的对应点分别为,,展平纸片,连接,,. 请完成:(1)观察图1中,和,试猜想这三个角的大小关系;(2)证明(1)中的猜想;【类比操作】如图2,N为矩形纸片的边上的一点,连接,在上取一点P,折叠纸片,使B,P两点重合,展平纸片,得到折痕;折叠纸片,使点B,P分别落在,上,得到折痕l,点B,P的对应点分别为,,展平纸片,连接,. 请完成:学科网(北京)股份有限公司 (3)证明是的一条三等分线.29.(2023·河南·统考中考真题)李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答. (1)观察发现:如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形,再分别作关于轴和直线对称的图形和,则可以看作是绕点顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图的情形解决以下问题:①若,请判断与的数量关系,并说明理由;②若,求,两点间的距离.(3)拓展应用:在(2)的条件下,若,,,连接.当与的边平行时,请直接写出的长.学科网(北京)股份有限公司 30.(2023·甘肃兰州·统考中考真题)在平面直角坐标系中,给出如下定义:为图形上任意一点,如果点到直线的距离等于图形上任意两点距离的最大值时,那么点称为直线的“伴随点”.例如:如图1,已知点,,在线段上,则点是直线:轴的“伴随点”. (1)如图2,已知点,,是线段上一点,直线过,两点,当点是直线的“伴随点”时,求点的坐标;(2)如图3,轴上方有一等边三角形,轴,顶点在轴上且在上方,,点是上一点,且点是直线:轴的伴随点.当点到轴的距离最小时,求等边三角形的边长;(3)如图4,以,,为顶点的正方形上始终存在点,使得点是直线:的伴随点.请直接写出的取值范围.学科网(北京)股份有限公司 31.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数(实数为常数)的图象为图象.(1)求证:无论取什么实数,图象与轴总有公共点;(2)是否存在整数,使图象与轴的公共点中有整点?若存在,求所有整数的值;若不存在,请说明理由.学科网(北京)股份有限公司
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2023中考数学真题分项汇报18矩形菱形正方形(共39题)(原卷版)
2023中考数学真题分项汇报19图形的平移翻折对称(共30题)(原卷版)
2023中考数学真题分项汇报20图形的旋转(共30题)(解析版)
2023中考数学真题分项汇报20图形的旋转(共30题)(原卷版)
2023中考数学真题分项汇报21图形的相似(共29题)(原卷版)
2023中考数学真题分项汇报23圆的有关性质(共46题)(原卷版)
2023中考数学真题分项汇报24圆的有关位置关系(共45题)(原卷版)
2023中考数学真题分项汇报25圆的有关计算与证明(共50题)(原卷版)
2023中考数学真题分项汇报28动点综合问题(共32题)(原卷版)
2023中考数学真题分项汇报30新定义与阅读理解创新型问题(共31题)(解析版)
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-08-08 01:24:01
页数:19
价格:¥20
大小:1.95 MB
文章作者:xmxhq
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划