首页

八下数学第4章一次函数4.5第1课时利用一次函数解决实际问题课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/40

2/40

3/40

4/40

剩余36页未读,查看更多内容需下载

4.5一次函数的应用第4章一次函数第1课时利用一次函数解决实际问题 情境导入小明从家里出发去菜地浇水,又去玉米地锄草,然后回家,其中x表示时间,y表示小明离家的距离.该图表示的函数是正比例函数吗?是一次函数吗?你是怎样认为的? Oxy观察与思考观察下图,你能发现它们三条函数直线之间的差别吗?这些玩具车下滑的过程中有哪些不同? 分段函数购买种子质量/千克0.511.522.533.54…付款金额/元…问题“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子的价格打8折.(1)填写下表:2.557.51012141618 (2)写出付款金额关于购买量的函数表达式,并画出函数图象.分析:从题目可知,种子总价与有关.若购买种子量为x>2时,种子总价y满足.若购买种子量为0≤x≤2时,种子总价y满足;购买种子量y=5xy=0.8×5(x-2)+10=4x+2 解:设购买量为x千克,付款金额为y元.当x>2时,y=0.8×5(x-2)+10=4x+2.当0≤x≤2时,y=5x;y=5x(0≤x≤2)y=4x+2(x>2)∴y=5x(0≤x≤2),4x+2(x>2).其函数图象如右.(3)写出付款金额关于购买量的函数表达式,并画出函数图象.这种函数叫做分段函数.注意:1.它是一个函数;2.要写明各段的自变量取值范围.yxO1210314 思考:你能由上面的函数表达式或函数图象解决以下问题吗?(1)一次购买1.5千克种子,需付款多少元?(2)30元最多能购买多少种子? 总结归纳在自变量的不同取值范围内表示函数关系的表达式有不同的形式,这样的函数称为分段函数,分段函数在生活中也有很多应用. 例1为节约用水,某市制定以下用水收费标准,每户每月用水不超过8立方米,每立方米收取1元外加0.3元的污水处理费;超过8立方米时,超过部分每立方米收取1.5元外加1.2元污水处理费,现设一户每月用水x立方米,应缴水费y元.(1)求出y关于x的函数关系式;解:y关于x的函数关系式为(1+0.3)x=1.3x(0≤x≤8),(1.5+1.2)(x-8)+1.3×8=2.7x-11.2(x>8).y= 解:当x=5m3时,y=1.3×5=6.5(元);当x=10m3时,y=2.7×10-11.2=15.8(元).即当用水量为5m3时,该户应缴水费6.5元;当用水量为10m3时,该户应缴水费15.8元.解:函数图象如图所示.(2)画出上述函数图象;(3)该市某户某月若用水x=5立方米和x=10立方米时,求应缴水费;302010816O..(8,10.4)(16,32)y/元x/m3 解:y=26.6>1.3×8,可知该户这月用水超过8m3,因此,2.7x-11.2=26.6,解方程,得x=14.即该户本月用水量为14m3.要能根据函数图象的形状和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论;看函数的图象时首先要理解横、纵坐标表示的含义,理解问题叙述的过程.方法总结(4)该市某户某月缴水费26.6元,求该户这月用水量. 例2某单位有职工几十人,想在节假日期间组织到外地旅游.当地有甲、乙两家旅行社,它们服务质量基本相同,到此地旅游的价格都是每人100元.经协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示单位先交1000元后,给予每位游客六折优惠.问该单位选择哪个旅行社,可使其支付的旅游总费用较少?分析:假设该单位参加旅游人数为x,按甲旅行社的优惠条件,应付费用80x(元);按乙旅行社的优惠条件,应付费用(60x+1000)(元).问题变为比较80x与60x+1000的大小了.建立数学模型解决实际问题 解法一:设该单位参加旅游人数为x.那么选甲旅行社,应付费用80x(元);选乙旅行社,应付(60x+1000)(元).记y1=80x,y2=60x+1000.在同一直角坐标系内作出两个函数的图象,y1与y2的图象交于点(50,4000).x/人5060y/元800160032002400400048005600O10203040708090y1=80xy2=60x+1000 观察图象,可知:当人数为50时,选择甲或乙旅行社费用都一样;当人数为少于50时,选择甲旅行社费用较少;当人数为50以上时,选择乙旅行社费用较少.x/人5060y/元800160032002400400048005600O10203040708090y1=80xy2=60x+1000甲乙 解法二:设选择甲、乙旅行社费用之差为y,则y=y1-y2=80x-(60x+1000)=20x-1000.画出一次函数y=20x-1000的图象如下图.O204060-200-400-600-800-1000yxy=20x-1000它与x轴交点为(50,0),由图知:(1)当x=50时,y=0,即y1=y2;(2)当x>50时,y>0,即y1>y2;(3)当x<50时,y<0,即y1<y2. 解法三:(1)当y1=y2,即80x=60x+1000时,x=50.∴当人数为50时,选择甲或乙旅行社费用都一样;(2)当y1>y2,即80x>60x+1000时,解得x>50.∴当人数为50以上时,选择乙旅行社费用较少;(3)当y1<y2,即80x<60x+1000时,解得x<50.∴当人数少于50时,选择甲旅行社费用较少. 例3某县大力发展猕猴桃产业,预计今年A地将采摘200t,B地将采摘300t.若要将这些猕猴桃运到甲、乙两个冷藏仓库,已知甲仓库可储存240t,乙仓库可储存260t,从A地运往甲、乙两处的费用分别为每吨20元和25元,从B地运往甲、乙两处的费用分别为每吨15元和18元.设从A地运往甲仓库的猕猴桃为xt,A、B两地运往两仓库的猕猴桃运输费用分别为yA元和yB元.(1)分别求出yA、yB与x之间的函数关系式;解:yA=20x+25(200-x)=-5x+5000,yB=15(240-x)+18(60+x)=3x+4680. (2)试讨论这次A、B两地的运输中,哪个的运费较少;解:∵yA-yB=(-5x+5000)-(3x+4680)=-8x+320,∴当-8x+320>0,即x<40时,B地的运费较少;当-8x+320=0,即x=40时,两地的运费一样多;当-8x+320<0,即x>40时,A地的运费较少. (3)考虑B地的经济承受能力,B地的猕猴桃运费不得超过4830元,在这种情况下,请问怎样调运才能使两地运费之和最少?求出这个最小值.解:设两地运费之和为y元,则y=yA+yB=(-5x+5000)+(3x+4680)=-2x+9680.由题意得yB=3x+4680≤4830,解得x≤50.∵y随x的增大而减小,x最大为50,∴y最小=-2×50+9680=9580.∴在此情况下,当A地运往甲、乙两仓库分别为50t、150t;B地运往甲、乙两仓库分别为190t、110t时,才能使两地运费之和最少,最少是9580元. 方法总结:阅读理解题的解题关键是读懂题意.第(2)小题比较大小要注意分类讨论,第(3)小题是利用一次函数的方案设计问题,一般先根据数量之间的关系建立函数模型,然后再利用一次函数的增减性确定出符合要求的最佳方案. 例4我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(如下图).海岸公海BA 下图中l1,l2分别表示两船相对于海岸的距离s与追赶时间t之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?解:观察图象知,当t=0时,B距海岸0海里,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.246810O2468t/分s/海里l1l2BA (2)A、B哪个速度快?t从0增加到10时,l2的纵坐标增加了2,l1的纵坐标增加了5.246810O2468t/分s/海里l1l2BA即10分钟内,A行驶了2海里,B行驶了5海里,所以B的速度快.75 当t=15时,l1上对应点在l2上对应点的下方这表明,15分钟时B不能追上A.246810O2468t/分s/海里l1l2BA1214(3)15分钟内B能否追上A?15 246810O2468t/分s/海里l1l2BA1214(4)如果一直追下去,那么B能否追上A?如图延伸l1、l2相交于点P.因此,如果一直追下去,那么B一定能追上A.P 246810O2468t/分s/海里l1l2BA1214P(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?从图中可以看出,l1与l2交点P的纵坐标小于12.这说明在A逃入公海前,我边防快艇B能够追上A船.10 k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2海里/分,快艇B的速度是0.5海里/分.246810O2468t/分s/海里l1l2BA1214(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少? 下图l1,l2分别是龟兔赛跑中s与t的函数图象.(1)这一次是米赛跑.(2)表示兔子的图象是.100l2练一练s/米l1l21002012040608012345Ot/分6871291011 (3)当兔子到达终点时,乌龟距终点还有米;(4)乌龟要与兔子同时到达终点乌龟要先跑米;(5)乌龟要先到达终点,至少要比兔子早跑分钟.40440s/米l1l212345O10020120406080t/分687-11291011-3-2-4 解析:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意得1600+100a=1400+100b,1600+300a=1400+200b.解得a=2,b=4.故这次越野跑的全程为1600+300×2=2200(米).1.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.2200 2.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h.解析:根据图象可得出:甲的速度为120÷5=24(km/h),乙的速度为(120﹣4)÷5=23.2(km/h),速度差为24-23.2=0.8(km/h).0.8B 3.一个试验室在0:00-2:00保持20℃的恒温,在2:00-4:00匀速升温,每小时升高5℃.写出试验室的温度T(单位:℃)关于时间t(单位:h)的函数表达式,并画出函数图象.解:(1)由题意得当0≤t≤2时,T=20;当2<t≤4时,T=20+5(t-2)=5t+10.∴函数表达式为T=20(0≤t≤2),5t+10(2<t≤4).T=20(0≤t≤2)T=5t+10(2<t≤4)201040T/℃t/hO123043(2)函数图象如右图. 4.近几年来,由于经济和社会发展迅速,用电量越来越多.为缓解用电紧张,某电力公司特制定了新的用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示.255075100255070100Oy(元)x(度)75 (1)请你根据图象所描述的信息,分别求出当0≤x≤50和x>50时,y与x的函数表达式;解:当0≤x≤50时,由图象可设y=k1x,∵其经过(50,25),代入得25=50k1,∴k1=0.5,∴y=0.5x;当x>50时,由图象可设y=k2x+b,∵其经过(50,25)、(100,70),得k2=0.9,b=-20,∴y=0.9x-20.255075100255070100Oy(元)x(度)75 (2)根据你的分析:当每月用电量不超过50度时,收费标准是多少?当每月用电量超过50度时,收费标准是多少?解:不超过50度部分按0.5元/度计算,超过部分按0.9元/度计算. 5.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是.30厘米、25厘米2小时、2.5小时 (2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?y甲=-15x+30y乙=-10x+25当x=1时,甲乙蜡烛高度相等.当1<x<2.5时,甲蜡烛比乙蜡烛低.当0≤x<1时,甲蜡烛比乙蜡烛高. (1)小明全家在旅游景点游玩了多少小时?6.“五一”黄金周的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s(千米)与时间t(时)的关系可以用图中的曲线表示.根据图象提供的有关信息,解答下列问题:解:由图象可知,小明全家在旅游景点游玩了4小时.51015120180s(千米)t(时)OABCD814 (2)求出返程途中,s(千米)与时间t(时)的函数关系,并回答小明全家到家是什么时间.解:设s=kx+b,由图象过(14,180)、(15,120),∴s=-60t+1020.令s=0,得t=17.∴返程途中s与时间t的函数关系是s=-60t+1020(14≤x≤17),小明全家当天17:00到家.51015120180s(千米)t(时)OABCD814 一次函数的应用建立一次函数模型解决实际问题对分段函数图象的理解及运用

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-06-19 14:00:08 页数:40
价格:¥3 大小:4.81 MB
文章作者:随遇而安

推荐特供

MORE