首页

5.3 第1课时等腰三角形的性质教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

5.3 简单的轴对称图形第1课时 等腰三角形的性质1.理解并掌握等腰三角形的性质;(重点)2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC有什么特点?二、合作探究探究点:等腰三角形的性质【类型一】利用“等边对等角”求角度等腰三角形的一个内角是50°,则这个三角形的底角的大小是(  )A.65°或50°B.80°或40°C.65°或80°D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】利用方程思想求等腰三角形的角度如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解析:设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x.∵BD=BC,∴∠BCD=∠BDC.∵∠A+∠ABD+∠ADB=180°,∠ADB+∠BDC=180°,∴∠BDC=∠A+∠ABD=2x.∵AB=AC,∴∠ABC=∠BCD=2x.在△ABC中,∠A+∠ABC+∠ACB=180°,∴x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°. 方法总结:利用等腰三角形的性质和三角形内角和可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x.【类型三】利用“等边对等角”的性质进行证明如图,已知△ABC为等腰三角形,BD、CE为底角的平分线,且∠DBC=∠F,试说明:EC∥DF.解析:先由等腰三角形的性质得出∠ABC=∠ACB,根据角平分线定义得到∠DBC=∠ABC,∠ECB=∠ACB,那么∠DBC=∠ECB,再由∠DBC=∠F,等量代换得到∠ECB=∠F,于是根据平行线的判定得出EC∥DF.解:∵△ABC为等腰三角形,AB=AC,∴∠ABC=∠ACB.又∵BD、CE为底角的平分线,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】利用等腰三角形“三线合一”的性质进行证明如图,点D、E在△ABC的边BC上,AB=AC.(1)若AD=AE,如图①,试说明:BD=CE;(2)若BD=CE,F为DE的中点,如图②,试说明:AF⊥BC.解析:(1)过A作AG⊥BC于G.根据等腰三角形的性质得出BG=CG,DG=EG即可得出BD=CE;(2)先求出BF=CF,再根据等腰三角形的性质求解.解:(1)如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG,∴BG-DG=CG-EG,∴BD=CE;(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.三、板书设计1.等腰三角形的性质:等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.2.运用等腰三角性质解题的一般思想方法: 方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高。

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-06-04 01:42:02 页数:3
价格:¥1 大小:645.20 KB
文章作者:随遇而安

推荐特供

MORE