首页

湘教版选修2-2课件4.3.1 利用导数研究函数的单调性

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/22

2/22

3/22

4/22

剩余18页未读,查看更多内容需下载

4.3导数在研究函数中的应用4.3.1利用导数研究函数的单调性 [学习目标]1.理解导数与函数单调性之间的关系.2.会利用导数研究函数的单调性.3.会求不超过三次的多项式函数的单调区间. [知识链接]以前,我们用定义来判断函数的单调性.在假设x1<x2的前提下,比较f(x1)与f(x2)的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易.如何利用导数来判断函数的单调性? 答根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减. [预习导引]1.设函数y=f(x)在某个区间上的导数为f′(x),如果,那么函数y=f(x)递增;如果,那么函数y=f(x)递减.2.从导数定义看,函数的导数就是函数值关于自变量的,变化率的绝对值越大说明变得越,绝对值越小说明变得越;从函数的图象看,导数是切线的,斜率的绝对值大说明切线,曲线也就陡,斜率的绝对值小说明切线较,曲线也就平缓一些.f′(x)>0f′(x)<0变化率快慢斜率陡平 规律方法关于利用导数证明函数单调性的问题:(1)首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行.(2)f′(x)>(或<)0,则f(x)为单调递增(或递减)函数;但要特别注意,f(x)为单调递增(或递减)函数,则f′(x)≥(或≤)0. 要点二 利用导数求函数的单调区间例2求下列函数的单调区间:(1)f(x)=2x3+3x2-36x+1;(2)f(x)=sinx-x(0<x<π);(3)f(x)=3x2-2lnx;(4)f(x)=x3-3tx. 规律方法求函数的单调区间的具体步骤是(1)优先确定f(x)的定义域;(2)计算导数f′(x);(3)解f′(x)>0和f′(x)<0;(4)定义域内满足f′(x)>0的区间为增区间,定义域内满足f′(x)<0的区间为减区间. 跟踪演练2求下列函数的单调区间:(1)f(x)=x2-lnx;(2)f(x)=x3-x2-x. 规律方法已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数f(x)在区间I上单调递增(或减),转化为不等式f′(x)≥0(f′(x)≤0)在区间I上恒成立,再用有关方法可求出参数的取值范围. 跟踪演练3设f(x)=ax3+x恰好有三个单调区间,求实数a的取值范围.解∵f′(x)=3ax2+1,且f(x)有三个单调区间,∴方程f′(x)=3ax2+1=0有两个不等的实根,∴Δ=02-4×1×3a>0,∴a<0.∴a的取值范围为(-∞,0). 再见

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2023-03-24 19:50:02 页数:22
价格:¥3 大小:498.50 KB
文章作者:U-344380

推荐特供

MORE