首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
山西省大同市第一中学2022-2023学年高二数学上学期期末考试试题(Word版附答案)
山西省大同市第一中学2022-2023学年高二数学上学期期末考试试题(Word版附答案)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/10
2
/10
剩余8页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022-2023学年第一学期高二期末考试数学试题一、单选题(每小题5分,共40分)1.已知空间向量,且,则向量与的夹角为()A.B.C.D.2.函数在下面哪个区间内是增函数?()A.B.C.D.3.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为,则第八个单音的频率为()A.B.C.D.4.已知数列的前项和为,若,且,则()A.2B.4C.6D.85.双曲线与的离心率之积为4,则的渐近线方程是()A.B.C.D.6.若对于,且,都有,则的取值范围是()A.B.C.D.7.设函数是定义在上的可导函数,且满足,其中为 的导函数.则对于任意,必有()A.B.C.D.8.数列中,,则()A.B.C.D.二、多选题全科试题免费下载公众号《高中僧课堂》(每小题5分,共20分;漏选得2分,错选得0分)9.设是是等差数列的前项和,且,则下列结论正确的是()A.公差B.C.D.与均为的最大值10.已知函数的最大值为3,最小值为,则的值可能为()A.B.C.D.11.对于函数,下列说法正确的是()A.函数在处取得极大值B.函数的值域为C.有两个不同的零点D.12.以下四个命题表述正确的是()A.直线恒过定点 B.已知圆,若点为直线上一点,且过点可向圆作出两条切线,切点分别为,则直线经过定点C.曲线与曲线恰有三条公切线,则D.圆上存在4个点到直线的距离都等于1三、填空题(每小题5分,共20分)13.等差数列中,,则满足不等式的正整数的最大值是__________.14.等比数列的各项均为实数,其前项为,已知,则__________.15.已知分别为椭圆的左顶点、右焦点、上顶点、下顶点,直线与相交于点,且,则__________.16.已知曲线在点处的切线与曲线只有一个公共点,则__________.四、解答题(共70分)17.(10分)已知等差数列中,,等比数列中,且.(1)求和;(2)求数列的前项和.18.(12分)已知函数.(1)若,求在的最值;(2)若恒成立,求的取值范围.19.(12分)如图,在四棱锥中,底面为菱形,且,平面平面,点为中点,在上,且满足 .(1)求证:平面;(2)求二面角的余弦值.20.(12分)设数列满足.(1)求;(2)求数列的前项和.21.(12分)已知一定点,及一定直线,以动点为圆心的圆过点,且与直线相切.(1)求动点的轨迹的方程;(2)设在直线上,直线分别与曲线相切于为线段的中点.求证:,且直线恒过定点.22.(12分)设函数是函数的导函数.(1)讨论的单调性;(2)若,且,结合(1)的结论,你能得到怎样的不等式?(3)利用(2)中的不等式证明:.2022-2023学年第一学期高二期末考试数学参考答案命题人:董凯审核人:张晓敏一、单选题(每小题5分,共40分) 1.D2.C3.D4.A5.D6.B7.C8.C二、多选题(每小题5分,共20分;漏选得2分,错选得0分)9.BD10.AC11.AB12.BC三、填空题(每小题5分,共20分)13.14.15.16.或四、解答题(共70分)17.解:(1)设等差数列的公差为,等比数列的公比为.因为,所以.又因为,所以.即有,解得,所以,且.于是.(2)①②①-②得,所以.18.解:(1)当时,由得,由得,所以在上单调递减,在上单调递增,且 则函数的最小值为,最大值为2.(2)由题得,若恒成立,则,即恒成立令,则,当时,;当时,,所以在上单调递减,在上单调递增,则,所以,故的取值范围为.19.(1)证明:连接,交于点,连接.底面为菱形,且为中点,为上一点,且满足,,又平面平面,平面.(2)解:取的中点为,连接底面为菱形,且,平面平面平面,以所在的直线分别为轴,建立如图所示的坐标系, 则..设平面的一个法向量为,则,即.取,则,易得平面的一个法向量为,所以所以二面角的余弦值为20.解:(1)数列满足时,当时,,上式也成立 (2)数列的前项和21.解:(1)动点为圆心的圆过点,且与直线相切,动圆圆心到定点与定直线的距离相等,动圆圆心的轨迹为抛物线,其中为焦点,为准线,动圆圆心轨迹方程为.(2)依题意可设,又故切线的斜率为,故切线同理可得到切线又且,故方程有两根,又为线段的中点, 又由得到:即同理可得到,故直线方程为:,故直线过定点.22.(1)解:由题意,函数,其中函数的定义域为,可得,令,可得或,若,则当时,,当时,,所以上单调递减,在上单调递增,若,则当时,,当时,,所以上单调递减,在上单调递增;(2)解:由题意,函数且可得,因为,可得,解得或(与矛盾,舍去),故由(1)知,函数在上单调递减,在上单调递增,所以在时取得最小值,最小值,即,故对于任意恒成立,有不等式成立,当且仅当时,“=”成立;(3)证明:由(2)知当时,有成立, 令,则整理得,,所以.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
山西省大同市第一中学2022-2023学年高二英语上学期期末考试试卷(Word版含答案)
山西省大同市第一中学2022-2023学年高二物理上学期期末考试试卷(Word版含答案)
山西省大同市第一中学2022-2023学年高二生物上学期期末考试试卷(Word版含答案)
山西省大同市2022-2023学年高三语文上学期1月期末试题(Word版附答案)
山西省大同市第一中学2022~2023学年高一数学上学期期末考试试题(Word版附答案)
山西省大同市第一中学2022~2023学年高一英语上学期期末考试试题(Word版附答案)
山西省大同市2022-2023学年高三英语上学期1月期末试题(Word版附答案)
山西省大同市第一中学2022-2023学年高二语文上学期期末考试试题(Word版附答案)
山西省大同市第一中学2022-2023学年高二物理上学期期末考试试题(Word版附答案)
山西省大同市第一中学2022-2023学年高二生物上学期期末考试试题(Word版附答案)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-03-23 21:12:01
页数:10
价格:¥2
大小:615.58 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划