首页

华师大版九下数学26.3第1课时运用二次函数解决实际问题课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/32

2/32

3/32

4/32

剩余28页未读,查看更多内容需下载

26.3实践与探索第26章二次函数3.求二次函数的表达式 问题引入如图,一座拱桥的纵截面是抛物线的一部分,拱桥的跨度是4.9米,水面宽是4米时,拱顶离水面2米.现在想了解水面宽度变化时,拱顶离水面的高度怎样变化.你能想出办法来吗? 利用二次函数解决实物抛物线形问题建立函数模型这是什么样的函数呢?拱桥的纵截面是抛物线,所以应当是个二次函数上述问题,你能想出办法来吗?探究 怎样建立直角坐标系比较简单呢?以拱顶为原点,抛物线的对称轴为y轴,建立直角坐标系,如图.从图看出,什么形式的二次函数,它的图象是这条抛物线呢?由于顶点坐标是(0,0),因此这个二次函数的形式为xOy-2-421-2-1A xOy-221-2-1A问题3如何确定a的值?因此,,其中|x|是水面宽度的一半,y是拱顶离水面高度的相反数,这样我们就可以了解到水面宽度变化时,拱顶离水面高度怎样变化.已知水面宽4m时,拱顶离水面高2m,因此点A(2,-2)在抛物线上,由此得出解得 由于拱桥的跨度为4.9m,因此自变量x的取值范围是:水面宽3m时,从而因此拱顶离水面高1.125m现在你能求出水面宽3m时,拱顶离水面高多少吗? 这条抛物线表示的二次函数为y=xOy−2−421−2−1B问题4水面下降1m,水面宽度增加多少?当水面下降1m时,水面的纵坐标为-3.令解得即水面下降1m时,水面宽度增加 我们来比较下面这些建系的方法(0,0)(4,0)(2,2)(-2,-2)(2,-2)(0,0)(-2,0)(2,0)(0,2)(-4,0)(0,0)(-2,2)谁最合适?为什么?yyyyooooxxxx 解:设该拱桥形成的抛物线的表达式为y=ax2.∵该抛物线过(10,-4),∴-4=100a,a=-0.04.∴y=-0.04x2.有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.如图所示的直角坐标系中,求出这条抛物线表示的函数的表达式;OACDByx20mh练一练 知识要点建立二次函数模型解决实际问题的基本步骤是什么?实际问题建立二次函数模型利用二次函数的图象和性质求解实际问题的解 例1某公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.如果不计其它因素,那么水池的半径至少要多少才能使喷出的水流不致落到池外?典例精析 解:建立如图所示的坐标系,根据题意得A点坐标为(0,1.25),顶点B坐标为(1,2.25).数学化o●C●Dxy●B(1,2.25)(0,1.25)A● 根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.当y=0时,可求得点C的坐标为(2.5,0);同理,点D的坐标为(-2.5,0).设y轴右侧的抛物线为y=a(x+h)2+k,由待定系数法可求得抛物线表达式为y=-(x-1)2+2.25.●B(1,2.25)(0,1.25)oAxy●D●C 例2如图,一名运动员在距离篮球圈中心4m(水平距离)远处跳起投篮,篮球准确落入篮圈,已知篮球运行的路线为抛物线,当篮球运行水平距离为2.5m时,篮球达到最大高度,且最大高度为3.5m,如果篮圈中心距离地面3.05m,那么篮球在该运动员出手时的高度是多少?典例精析利用二次函数解决运动中抛物线型问题 解:建立如图的直角坐标系.则点A的坐标是(1.5,3.05),篮球在最大高度时的位置为B(0,3.5).以点C表示运动员投篮球的出手处.xyO 设此以B(0,3.5)为顶点的抛物线表达式为y=ax2+3.5.所以该抛物线的表达式为y=-0.2x2+3.5.当x=-2.5时,y=2.25.故该运动员出手时篮球的高度为2.25m.而点A(1.5,3.05)在这条抛物线上,所以有1.52a+3.5=3.05,xyO解得a=-0.2. 某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润是元.探究交流180006000数量关系(1)销售额=单价×销售量;(2)利润=销售额-总成本=单件利润×销售量;(3)单件利润=销售单价-进价.利润最大问题 例3某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件.已知该商品的进价为每件40元,如何定价才能使利润最大?涨价销售①设每件涨价x元,每星期获得的利润为y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10x(20+x)(300-10x)则y=(20+x)(300-10x)=-10x2+100x+6000.6000 ②自变量x的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x≥0,且x≥0,因此自变量的取值范围是0≤x≤30.③涨价多少元时,利润最大?最大利润是多少?y=-10x2+100x+6000,当时,y=-10×52+100×5+6000=6250.即涨价5元时利润最大,最大利润是6250元. 降价销售①设每件降价x元,每星期获得的利润为y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售20300(20−x)(300+20x)(20−x)(300+20x)所得利润y=(20−x)(300+20x)=−20x2+100x+6000.6000 综上可知,定价65元时利润最大,最大利润是6250元.②自变量x的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20−x≥0,且x≥0,因此自变量的取值范围是0≤x≤20.③降价多少元时,利润最大?最大利润是多少?当时,即降价2.5元时,最大利润是6125元.y=−20x2+100x+6000,由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗? 知识要点求解最大利润问题的一般步骤(1)建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和增减性求出. y=(160+10x)(120-6x)某旅馆有客房120间,每间房的日租金为160元,每天都客满.经市场调查,若一间客房日租金每增加10元,则客房每天少出租6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?解:设每间客房的日租金提高10x元,则每天客房出租数减少6x间,则有练一练=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20. 当x=2时,y有最大值,且y最大=19440.答:每间客房的日租金提高到180元时,客房日租金的总收入最高,最高收入为19440元.这时每间客房的日租金为160+10×2=180(元). 1.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30)出售,可卖出(600-20x)件,为使利润最大,则每件售价应定为元.25 2.进价为80元的某件定价100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价x(元)之间的函数关系式为.每月利润w(元)与衬衣售价x(元)之间的函数关系式为.(以上关系式只列式不化简).y=2000-5(x-100)w=[2000-5(x-100)](x-80) 3.足球被从地面上踢起,它距地面的高度h(m)可用公式h=-4.9t2+19.6t来表示,其中t(s)表示足球被踢出后经过的时间,则球在s后落地.44.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数表达式为,那么铅球运动过程中最高点离地面的距离为米.xyO2 5.某公园草坪的防护栏是由100段形状相同的抛物线形组成的,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50mB.100mC.160mD.200mC xy516O76.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75,其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?解:由题图可求得y=-x2+20x-75.∵-1<0,对称轴x=10,∴当x=10时,y值最大,最大值为25.即销售单价定为10元时,销售利润最大,最大利润为25元. (2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?解:由对称性知y=16时,x1=7和x2=13.故销售单价在7元到13元之间(含7元和13元)时,利润不低于16元.xy516O713 转化回归(二次函数的图象和性质)拱桥问题运动中的抛物线问题(函数建模问题,营销问题)建立恰当的直角坐标系能够将实际距离准确的转化为点的坐标;选择运算简便的方法实际问题数学模型转化的关键 商品利润最大问题建立函数关系式总利润=单件利润×销售量或总利润=总售价-总成本确定自变量取值范围涨价:要保证销售量≥0;降件:要保证单件利润≥0确定最大利润利用配方法或公式求最大值或利用函数简图和性质求出

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-03-23 05:20:02 页数:32
价格:¥3 大小:4.33 MB
文章作者:随遇而安

推荐特供

MORE