首页

湘教版八下数学2.2.2第1课时平行四边形的判定定理1、2课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/29

2/29

3/29

4/29

剩余25页未读,查看更多内容需下载

2.2.2平行四边形的判定第2章四边形第1课时平行四边形的判定定理1,2 数学来源于生活,高铁被外媒誉为我国新四大发明之一,我们知道铁路的两条直铺的铁轨互相平行,那么铁路工人是怎样的确保它们平行的呢?情景引入 只要使互相平行的夹在铁轨之间的枕木长相等就可以了那这是为什么呢?会不会跟我们学过的平行四边形有关呢? 问题我们知道,两组对边分别平行的是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?猜想1:一组对边相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形等腰梯形不是平行四边形,因而此猜想错误.猜想2:一组对边平行的四边形是平行四边形.梯形的上下底平行,但不是平行四边形,因而此猜想错误. BA活动如图,将线段AB向右平移BC长度后得到线段DC,连接AD,BC,由此你能猜想四边形ABCD的形状吗?DC四边形ABCD是平行四边形猜想3:一组对边平行且相等的四边形是平行四边形.你能证明吗? ABCD证明思路作对角线构造全等三角形一组对应角相等两组对边分别平行四边形ABCD是平行四边形如图,在四边形ABCD中,AB=CD且AB∥CD,求证:四边形ABCD是平行四边形.证一证 ABCD21证明:连接AC.∵AB∥CD,∴∠1=∠2.在△ABC和△CDA中,AB=CD,AC=CA,∠1=∠2,∴△ABC≌△CDA(SAS).∴∠ACB=∠CAD,∴AD∥CB.又∵AB∥CD,∴四边形ABCD是平行四边形. 平行四边形的判定定理1:一组对边平行且相等的四边形是平行四边形.归纳总结几何语言描述:在四边形ABCD中,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.BDAC 典例精析证明:∵四边形ABCD是平行四边形,∴AB=CD,EB∥FD.又∵EB=AB,FD=CD,∴EB=FD.∴四边形EBFD是平行四边形.例1如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形. 例2如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是平行四边形.证明:∵AB=CD,∴AB+BC=CD+BC,即AC=BD.在△ACE和△DBF中,AC=DB,∠A=∠D,AE=DF,∴△ACE≌△DBF(SAS).∴CE=BF,∠ACE=∠DBF.∴CE∥BF.∴四边形BFCE是平行四边形. 【变式题】如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.证明:(1)∵点C是AB的中点,∴AC=BC.在△ADC与△CEB中,AD=CE,CD=BE,AC=BC,∴△ADC≌△CEB(SSS).(2)∵△ADC≌△CEB,∴∠ACD=∠CBE.∴CD∥BE.又∵CD=BE,∴四边形CBED是平行四边形. 练一练1.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是(  )A.AB∥CD,AB=CDB.AB∥CD,BC∥ADC.AB∥CD,BC=ADD.AB=CD,BC=ADC 猜想观看视频,将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?点击视频 开始播放→两组对边分别相等的四边形是平行四边形 你能根据平行四边形的定义证明它们吗?已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.ABCD连接AC.在△ABC和△CDA中,AB=CD(已知),BC=DA(已知),AC=CA(公共边),∴△ABC≌△CDA(SSS).∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形.证明:1423证一证 平行四边形的判定定理2:两组对边分别相等的四边形是平行四边形.归纳总结几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.BDAC 例3如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.证明:Rt△MON中,由勾股定理得(x-5)2+42=(x-3)2,解得x=8.∴PM=11-x=3,ON=x-5=3,MN=x-3=5.∴PM=ON,OP=MN.∴四边形PONM是平行四边形.典例精析 例4如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠FBA=60°.∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS).∴AC=DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD.∴四边形DAEF是平行四边形. 2.如图,AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.证明:在Rt△ABC和Rt△CDA中,∵AC=CA,AB=CD,∴Rt△ABC≌Rt△CDA(HL).∴BC=DA.又∵AB=CD,∴四边形ABCD是平行四边形.练一练 证明:∵四边形AEFD和EBCF都是平行四边形,∴AD∥EF,AD=EF,EF∥BC,EF=BC.∴AD∥BC,AD=BC.∴四边形ABCD是平行四边形.ABCDEF3.四边形AEFD和EBCF都是平行四边形,求证:四边形ABCD是平行四边形. 1.如图所示,△ABC是等边三角形,P是其内任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为24,则PD+PE+PF=.AFBDCEP82.已知AD∥BC,要使这个四边形ABCD为平行四边形,需要增加条件.AD=BC或AB∥CD ∵E,F分别是AD,BC的中点,3.已知:如图,E,F分别是平行四边形ABCD的边AD,BC的中点.求证:BE=DF.DFECBA证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴ED=BF,即EDBF.∥=∴四边形EBFD是平行四边形(一组对边平行并且相等的四边形是平行四边形).∴BE=DF(平行四边形的对边分别相等). 证明:在平行四边形ABCD中,∠A=∠C,AD=BC,又∵BF=DH,∴AH=CF.又∵AE=CG,∴△AEH≌△CGF(SAS).∴EH=GF.同理得△BEF≌△DGH(SAS)∴GH=EF.∴四边形EFGH是平行四边形.4.如图,已知E,F,G,H分别是▱ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形. 5.现有一块等腰直角三角形铁板,要求切割一次,焊接成一个含有45°角的平行四边形(不能有余料),请你设计一种方案,并说明该方案正确的理由.ABC能力提升 CABFED DCABE ABCFDE 6.老陈有一块平行四边形菜园地,夏季到来了,院子里瓜果飘香.有一天突然下起了暴雨,将菜园地的一部分冲垮,老陈的菜园地与邻居家的菜园地之间的界限看不清了,巧的是,刚好保留了顶点A和C.(1)如图,若你只有一把直尺和一个圆规,你能将图形补全吗?若能,请补全图形(不写作法,只保留作图痕迹),并证明四边形ABCD是平行四边形.ABC (2)若E是BC边上的一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE,①作出满足题意的点F,简要说明作图过程.②依据你的作图,证明:DF=BE.ABCEABCDOF 平行四边形的判定判定定理1判定定理2一组对边平行且相等的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2023-02-23 10:17:02 页数:29
价格:¥3 大小:5.36 MB
文章作者:随遇而安

推荐特供

MORE