首页

广东省深圳市2018年中考数学试卷【及真题答案】

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/9

2/9

3/9

4/9

剩余5页未读,查看更多内容需下载

2018年广东省深圳市中考数学一、选择题:本大题共12个小题,每小题3分,共36分.1.6的相反数是()A.﹣6B.C.D.62.260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.图中立体图形的主视图是()A.B.C.4.观察下列图形,是中心对称图形的是(D.)A.B.C.D.5.下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10B.85,5C.80,85D.80,10下列运算正确的是()A.a2•a3=a6B.3a﹣a=2aC.a8÷a4=a2D.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是(A.(2,2)B.(2,3)C.(2,4)D.(2,5)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是())A.∠1=∠2B.∠3=∠4C.∠2+∠4=180°D.∠1+∠4=180°9.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共 )480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是(A.B.C.D.10.如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3B.C.6D.11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0D.ax2+bx+c﹣3=0有两个不相等的实数根C.3a+c<012.如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③二、填空题(每题3分,满分12分)C.②④D.③④13.分解因式:a2﹣9=.14.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:. 15.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=.三、解答题(本大题共7小题,共70分.)17.计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.18.先化简,再求值:,其中x=2.19.某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a=,b=.请你补全条形统计图.若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少? 20.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.求证:四边形ACDB为△FEC的亲密菱形;求四边形ACDB的面积.21.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH. 23.已知顶点为A抛物线经过点,点.求抛物线的解析式;如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标. 参考答案1.A.2.B.3.B.4.D.5.A.6.B.7.D.8.B.9.A.10.D.11.C.12.B.13.(a+3)(a﹣3).14..15.8.16..17.解:原式=2﹣2×++1=3.18.解:原式=把x=2代入得:原式=19.解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.20.(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点, ,∵在Rt△ACH中,∠ACH=45°,∴∴四边形ACDB的面积为:.解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cosB==,在Rt△AMB中,BM=1,∴AB==;连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.23.解:(1)把点代入,解得:a=1,;∴抛物线的解析式为:(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A, B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,,,,都满足条设点P(t,﹣2t﹣1),则:解得由对称性知;当时,也满足∠OPM=∠MAF,∴件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2, 设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-02-21 22:33:04 页数:9
价格:¥10 大小:261.33 KB
文章作者:送你两朵小红花

推荐特供

MORE